Lin-K76 commited on
Commit
f802aeb
·
verified ·
1 Parent(s): 057ac8b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +155 -67
README.md CHANGED
@@ -7,19 +7,66 @@ tags:
7
  # Qwen2-1.5B-Instruct-FP8
8
 
9
  ## Model Overview
10
- * <h3 style="display: inline;">Model Architecture:</h3> Based on and identical to the Qwen2-1.5B-Instruct architecture
11
- * <h3 style="display: inline;">Model Optimizations:</h3> Weights and activations quantized to FP8
12
- * <h3 style="display: inline;">Release Date:</h3> June 14, 2024
13
- * <h3 style="display: inline;">Model Developers:</h3> Neural Magic
 
 
 
 
 
 
 
14
 
15
- Qwen2-1.5B-Instruct quantized to FP8 weights and activations using per-tensor quantization through the [AutoFP8 repository](https://github.com/neuralmagic/AutoFP8), ready for inference with vLLM >= 0.5.0.
16
- Calibrated with 512 UltraChat samples to achieve 99% performance recovery on the Open LLM Benchmark evaluations.
17
- Reduces space on disk by ~40%.
18
- Part of the [FP8 LLMs for vLLM collection](https://huggingface.co/collections/neuralmagic/fp8-llms-for-vllm-666742ed2b78b7ac8df13127).
19
 
 
20
 
21
- ## Usage and Creation
22
- Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  ```python
25
  from datasets import load_dataset
@@ -37,72 +84,113 @@ ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
37
  examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
38
  examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
39
 
40
- quantize_config = BaseQuantizeConfig(quant_method="fp8", activation_scheme="static")
 
 
 
 
41
 
42
  model = AutoFP8ForCausalLM.from_pretrained(
43
  pretrained_model_dir, quantize_config=quantize_config
44
  )
 
45
  model.quantize(examples)
46
  model.save_quantized(quantized_model_dir)
47
  ```
48
 
49
- Evaluated through vLLM with the following script:
50
 
 
51
  ```
52
- #!/bin/bash
53
-
54
- # Example usage:
55
- # CUDA_VISIBLE_DEVICES=0 ./eval_openllm.sh "neuralmagic/Qwen2-1.5B-Instruct-FP8" "tensor_parallel_size=1,max_model_len=4096,add_bos_token=True,gpu_memory_utilization=0.7"
56
-
57
- export MODEL_DIR=${1}
58
- export MODEL_ARGS=${2}
59
-
60
- declare -A tasks_fewshot=(
61
- ["arc_challenge"]=25
62
- ["winogrande"]=5
63
- ["truthfulqa_mc2"]=0
64
- ["hellaswag"]=10
65
- ["mmlu"]=5
66
- ["gsm8k"]=5
67
- )
68
-
69
- declare -A batch_sizes=(
70
- ["arc_challenge"]="auto"
71
- ["winogrande"]="auto"
72
- ["truthfulqa_mc2"]="auto"
73
- ["hellaswag"]="auto"
74
- ["mmlu"]=1
75
- ["gsm8k"]="auto"
76
- )
77
-
78
- for TASK in "${!tasks_fewshot[@]}"; do
79
- NUM_FEWSHOT=${tasks_fewshot[$TASK]}
80
- BATCH_SIZE=${batch_sizes[$TASK]}
81
- lm_eval --model vllm \
82
- --model_args pretrained=$MODEL_DIR,$MODEL_ARGS \
83
- --tasks ${TASK} \
84
- --num_fewshot ${NUM_FEWSHOT} \
85
- --write_out \
86
- --show_config \
87
- --device cuda \
88
- --batch_size ${BATCH_SIZE} \
89
- --output_path="results/${TASK}"
90
- done
91
  ```
92
 
93
- ## Evaluation
94
-
95
- Evaluated on the Open LLM Leaderboard evaluations through vLLM.
96
-
97
- ### Open LLM Leaderboard evaluation scores
98
- | | Qwen2-1.5B-Instruct | Qwen2-1.5B-Instruct-FP8<br>(this model) |
99
- | :------------------: | :----------------------: | :------------------------------------------------: |
100
- | arc-c<br>25-shot | 43.09 | 41.81 |
101
- | hellaswag<br>10-shot | 67.48 | 67.18 |
102
- | mmlu<br>5-shot | 55.87 | 55.60 |
103
- | truthfulqa<br>0-shot | 43.34 | 43.09 |
104
- | winogrande<br>5-shot | 63.61 | 63.38 |
105
- | gsm8k<br>5-shot | 57.70 | 56.48 |
106
- | **Average<br>Accuracy** | **55.18** | **54.59** |
107
- | **Recovery** | **100%** | **98.93%** |
108
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Qwen2-1.5B-Instruct-FP8
8
 
9
  ## Model Overview
10
+ - **Model Architecture:** Qwen2
11
+ - **Input:** Text
12
+ - **Output:** Text
13
+ - **Model Optimizations:**
14
+ - **Weight quantization:** FP8
15
+ - **Activation quantization:** FP8
16
+ - **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
17
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
18
+ - **Release Date:** 6/14/2024
19
+ - **Version:** 1.0
20
+ - **Model Developers:** Neural Magic
21
 
22
+ Quantized version of [Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct).
23
+ It achieves an average score of 54.59 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 55.18.
 
 
24
 
25
+ ### Model Optimizations
26
 
27
+ This model was obtained by quantizing the weights and activations of [Qwen2-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2-1.5B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.0.
28
+ This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
29
+
30
+ Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-channel quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations.
31
+ [AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
32
+
33
+ ## Deployment
34
+
35
+ ### Use with vLLM
36
+
37
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
38
+
39
+ ```python
40
+ from vllm import LLM, SamplingParams
41
+ from transformers import AutoTokenizer
42
+
43
+ model_id = "neuralmagic/Qwen2-1.5B-Instruct-FP8"
44
+
45
+ sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
46
+
47
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
48
+
49
+ messages = [
50
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
51
+ {"role": "user", "content": "Who are you?"},
52
+ ]
53
+
54
+ prompts = tokenizer.apply_chat_template(messages, tokenize=False)
55
+
56
+ llm = LLM(model=model_id)
57
+
58
+ outputs = llm.generate(prompts, sampling_params)
59
+
60
+ generated_text = outputs[0].outputs[0].text
61
+ print(generated_text)
62
+ ```
63
+
64
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
65
+
66
+ ## Creation
67
+
68
+ This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below.
69
+ Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
70
 
71
  ```python
72
  from datasets import load_dataset
 
84
  examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
85
  examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
86
 
87
+ quantize_config = BaseQuantizeConfig(
88
+ quant_method="fp8",
89
+ activation_scheme="static"
90
+ ignore_patterns=["re:.*lm_head"],
91
+ )
92
 
93
  model = AutoFP8ForCausalLM.from_pretrained(
94
  pretrained_model_dir, quantize_config=quantize_config
95
  )
96
+
97
  model.quantize(examples)
98
  model.save_quantized(quantized_model_dir)
99
  ```
100
 
101
+ ## Evaluation
102
 
103
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
104
  ```
105
+ lm_eval \
106
+ --model vllm \
107
+ --model_args pretrained="neuralmagic/Qwen2-1.5B-Instruct-FP8",dtype=auto,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \
108
+ --tasks openllm \
109
+ --batch_size auto
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  ```
111
 
112
+ ### Accuracy
113
+
114
+ #### Open LLM Leaderboard evaluation scores
115
+ <table>
116
+ <tr>
117
+ <td><strong>Benchmark</strong>
118
+ </td>
119
+ <td><strong>Qwen2-1.5B-Instruct</strong>
120
+ </td>
121
+ <td><strong>Qwen2-1.5B-Instruct-FP8(this model)</strong>
122
+ </td>
123
+ <td><strong>Recovery</strong>
124
+ </td>
125
+ </tr>
126
+ <tr>
127
+ <td>MMLU (5-shot)
128
+ </td>
129
+ <td>55.87
130
+ </td>
131
+ <td>55.60
132
+ </td>
133
+ <td>99.51%
134
+ </td>
135
+ </tr>
136
+ <tr>
137
+ <td>ARC Challenge (25-shot)
138
+ </td>
139
+ <td>43.09
140
+ </td>
141
+ <td>41.81
142
+ </td>
143
+ <td>97.02%
144
+ </td>
145
+ </tr>
146
+ <tr>
147
+ <td>GSM-8K (5-shot, strict-match)
148
+ </td>
149
+ <td>57.70
150
+ </td>
151
+ <td>56.48
152
+ </td>
153
+ <td>97.88%
154
+ </td>
155
+ </tr>
156
+ <tr>
157
+ <td>Hellaswag (10-shot)
158
+ </td>
159
+ <td>67.48
160
+ </td>
161
+ <td>67.18
162
+ </td>
163
+ <td>99.55%
164
+ </td>
165
+ </tr>
166
+ <tr>
167
+ <td>Winogrande (5-shot)
168
+ </td>
169
+ <td>63.61
170
+ </td>
171
+ <td>63.38
172
+ </td>
173
+ <td>99.63%
174
+ </td>
175
+ </tr>
176
+ <tr>
177
+ <td>TruthfulQA (0-shot)
178
+ </td>
179
+ <td>43.34
180
+ </td>
181
+ <td>43.09
182
+ </td>
183
+ <td>99.42%
184
+ </td>
185
+ </tr>
186
+ <tr>
187
+ <td><strong>Average</strong>
188
+ </td>
189
+ <td><strong>55.18</strong>
190
+ </td>
191
+ <td><strong>54.59</strong>
192
+ </td>
193
+ <td><strong>98.93%</strong>
194
+ </td>
195
+ </tr>
196
+ </table>