Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: teknium/OpenHermes-2.5-Mistral-7B
|
3 |
+
inference: false
|
4 |
+
model_type: mistral
|
5 |
+
prompt_template: |
|
6 |
+
<|im_start|>system
|
7 |
+
{system_message}<|im_end|>
|
8 |
+
<|im_start|>user
|
9 |
+
{prompt}<|im_end|>
|
10 |
+
<|im_start|>assistant
|
11 |
+
sparsified_by: mgoin
|
12 |
+
tags:
|
13 |
+
- deepsparse
|
14 |
+
---
|
15 |
+
|
16 |
+
# OpenHermes 2.5 Mistral 7B - DeepSparse
|
17 |
+
|
18 |
+
This repo contains [DeepSparse](https://github.com/neuralmagic/deepsparse) model files for [Teknium's OpenHermes 2.5 Mistral 7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B).
|
19 |
+
|
20 |
+
This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
|
21 |
+
|
22 |
+
## Inference
|
23 |
+
|
24 |
+
Install DeepSparse: `pip install deepsparse-nightly[llm]`
|
25 |
+
|
26 |
+
```python
|
27 |
+
from deepsparse import TextGeneration
|
28 |
+
system_message = ""
|
29 |
+
prompt = "Write a quick sort algorithm in Python"
|
30 |
+
formatted_prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
|
31 |
+
model = TextGeneration(model="hf:mgoin/Nous-Hermes-llama-2-7b-pruned50-quant-ds")
|
32 |
+
print(model(formatted_prompt, max_new_tokens=500).generations[0].text)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Prompt template: ChatML
|
36 |
+
|
37 |
+
```
|
38 |
+
<|im_start|>system
|
39 |
+
{system_message}<|im_end|>
|
40 |
+
<|im_start|>user
|
41 |
+
{prompt}<|im_end|>
|
42 |
+
<|im_start|>assistant
|
43 |
+
|
44 |
+
```
|
45 |
+
|
46 |
+
## Sparsification
|
47 |
+
|
48 |
+
See the `recipe.yaml` in this repo and follow the instructions below.
|
49 |
+
|
50 |
+
```
|
51 |
+
git clone https://github.com/neuralmagic/sparseml
|
52 |
+
pip install -e "sparseml[transformers]"
|
53 |
+
python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py teknium/OpenHermes-2.5-Mistral-7B open_platypus --recipe recipe.yaml --save True
|
54 |
+
python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
|
55 |
+
cp deployment/model.onnx deployment/model-orig.onnx
|
56 |
+
```
|
57 |
+
|
58 |
+
```python
|
59 |
+
import os
|
60 |
+
import onnx
|
61 |
+
from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
|
62 |
+
input_file = "deployment/model-orig.onnx"
|
63 |
+
output_file = "deployment/model.onnx"
|
64 |
+
model = onnx.load(input_file, load_external_data=False)
|
65 |
+
model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
|
66 |
+
onnx.save(model, output_file)
|
67 |
+
print(f"Modified model saved to: {output_file}")
|
68 |
+
```
|
69 |
+
|
70 |
+
## Slack
|
71 |
+
|
72 |
+
For further support, and discussions on these models and AI in general, join us at:
|
73 |
+
|
74 |
+
[Neural Magic's Slack server](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
|