Lin-K76 commited on
Commit
5ab9fa5
·
verified ·
1 Parent(s): 8db78f8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -9
README.md CHANGED
@@ -25,7 +25,7 @@ language:
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
28
- It achieves an average score of 68.52 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 69.33.
29
 
30
  ### Model Optimizations
31
 
@@ -161,7 +161,8 @@ oneshot(
161
 
162
  ## Evaluation
163
 
164
- The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
 
165
  ```
166
  lm_eval \
167
  --model vllm \
@@ -195,13 +196,13 @@ lm_eval \
195
  </td>
196
  </tr>
197
  <tr>
198
- <td>ARC Challenge (25-shot)
199
  </td>
200
- <td>60.41
201
  </td>
202
- <td>59.39
203
  </td>
204
- <td>98.31%
205
  </td>
206
  </tr>
207
  <tr>
@@ -247,11 +248,11 @@ lm_eval \
247
  <tr>
248
  <td><strong>Average</strong>
249
  </td>
250
- <td><strong>69.33</strong>
251
  </td>
252
- <td><strong>68.52</strong>
253
  </td>
254
- <td><strong>98.84%</strong>
255
  </td>
256
  </tr>
257
  </table>
 
25
  - **Model Developers:** Neural Magic
26
 
27
  Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
28
+ It achieves an average score of 72.33 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.11.
29
 
30
  ### Model Optimizations
31
 
 
161
 
162
  ## Evaluation
163
 
164
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command.
165
+ A modified version of ARC-C was used for evaluations, in line with Llama 3.1's prompting.
166
  ```
167
  lm_eval \
168
  --model vllm \
 
196
  </td>
197
  </tr>
198
  <tr>
199
+ <td>ARC Challenge (0-shot)
200
  </td>
201
+ <td>83.11
202
  </td>
203
+ <td>82.25
204
  </td>
205
+ <td>98.97%
206
  </td>
207
  </tr>
208
  <tr>
 
248
  <tr>
249
  <td><strong>Average</strong>
250
  </td>
251
+ <td><strong>73.11</strong>
252
  </td>
253
+ <td><strong>72.33</strong>
254
  </td>
255
+ <td><strong>98.94%</strong>
256
  </td>
257
  </tr>
258
  </table>