mwitiderrick commited on
Commit
45051a3
1 Parent(s): 6bbfc4b

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: NousResearch/Llama-2-7b-chat-hf
3
+ inference: false
4
+ model_type: llama
5
+ prompt_template: |
6
+ <s>[INST]
7
+ {prompt}
8
+ [/INST]
9
+ quantized_by: mwitiderrick
10
+ tags:
11
+ - deepsparse
12
+ ---
13
+ # Llama-2-7b-chat-hf - DeepSparse
14
+ This repo contains model files for [Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
15
+
16
+ This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml).
17
+
18
+ ## Inference
19
+ Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs:
20
+ ```bash
21
+ pip install deepsparse-nightly[llm]
22
+ ```
23
+ Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md):
24
+ ```python
25
+ from deepsparse import TextGeneration
26
+
27
+ prompt = "How to make banana bread?"
28
+ formatted_prompt = f"### Instruction\n{prompt}\n### Response:\n"
29
+
30
+ model = TextGeneration(model_path="hf:nm-testing/SOLAR-10.7B-Instruct-v1.0-pruned50-quant-ds")
31
+
32
+ print(model(formatted_prompt, max_new_tokens=200).generations[0].text)
33
+ """
34
+
35
+ """
36
+ ```
37
+
38
+ ## Prompt template
39
+ ```
40
+ <s>[INST]
41
+ <prompt>
42
+ [/INST]
43
+
44
+ ```
45
+ ## Sparsification
46
+ For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below.
47
+
48
+ ```bash
49
+ git clone https://github.com/neuralmagic/sparseml
50
+ pip install -e "sparseml[transformers]"
51
+ python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py NousResearch/Llama-2-7b-chat-hf open_platypus --precision float16 --recipe recipe.yaml --save True
52
+ python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment
53
+ cp deployment/model.onnx deployment/model-orig.onnx
54
+ ```
55
+ Run this kv-cache injection to speed up the model at inference by caching the Key and Value states:
56
+ ```python
57
+ import os
58
+ import onnx
59
+ from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector
60
+ input_file = "deployment/model-orig.onnx"
61
+ output_file = "deployment/model.onnx"
62
+ model = onnx.load(input_file, load_external_data=False)
63
+ model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model)
64
+ onnx.save(model, output_file)
65
+ print(f"Modified model saved to: {output_file}")
66
+ ```
67
+ Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models.
68
+ ## Slack
69
+
70
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)