ekurtic commited on
Commit
e599123
1 Parent(s): 5f7d880

Update model card

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - openai/gsm8k
4
+ language:
5
+ - en
6
+ metrics:
7
+ - accuracy
8
+ base_model: meta-llama/Llama-2-7b-hf
9
+ inference: true
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ ---
13
+
14
+ # Llama-2-7b-gsm8k
15
+
16
+ This repo contains a [dense Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) finetuned for arithmetic reasoning task using the [GSM8k](https://huggingface.co/datasets/openai/gsm8k) dataset.
17
+
18
+ Official model weights from [Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment](https://arxiv.org/abs/2405.03594).
19
+
20
+ **Authors**: Neural Magic, Cerebras
21
+
22
+ ## Usage
23
+
24
+ Below we share some code snippets on how to get quickly started with running the model.
25
+
26
+ ### Running the model
27
+
28
+ ```python
29
+ # pip install transformers accelerate
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+
32
+ tokenizer = AutoTokenizer.from_pretrained("neuralmagic/Llama-2-7b-gsm8k")
33
+ model = AutoModelForCausalLM.from_pretrained("neuralmagic/Llama-2-7b-gsm8k", device_map="auto")
34
+
35
+ input_text = "Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell altogether in April and May?"
36
+ input_ids = tokenizer.apply_chat_template(input_text, add_generation_prompt=True, return_tensors="pt").to("cuda")
37
+
38
+ outputs = model.generate(**input_ids)
39
+ print(tokenizer.decode(outputs[0]))
40
+ ```
41
+
42
+ ## Evaluation Benchmark Results
43
+
44
+ Model evaluation metrics and results.
45
+
46
+ | Benchmark | Metric | Llama-2-7b-gsm8k |
47
+ |------------------------------------------------|---------------|-------------|
48
+ | [GSM8K](https://arxiv.org/abs/2110.14168) | 0-shot | 35.5% |
49
+
50
+
51
+ ## Model Training Details
52
+
53
+ sp0_2ep_lr3e-5_bs32_warmup20ba
54
+
55
+ This model was obtained by fine-tuning the [dense Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the [GSM8k](https://huggingface.co/datasets/openai/gsm8k) dataset.
56
+ Fine-tuning was performed for 2 epochs with batch-size of 32, with linearly decaying learning-rate from initial value of 3e-5 and warm-up phase of 20 steps.
57
+
58
+ ## Help
59
+
60
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)
61
+
62
+