Text Generation
Transformers
ONNX
llama
sparse
code
deepsparse
mgoin commited on
Commit
5017910
·
verified ·
1 Parent(s): d6b7031

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca
3
+ inference: false
4
+ model_type: llama
5
+ pipeline_tag: text-generation
6
+ datasets:
7
+ - cerebras/SlimPajama-627B
8
+ - theblackcat102/evol-codealpaca-v1
9
+ tags:
10
+ - sparse
11
+ - code
12
+ - deepsparse
13
+ ---
14
+
15
+ # Llama-2-7b-pruned70-retrained-evolcodealpaca-quant-ds
16
+
17
+ This repo contains a [70% sparse Llama 2 7B](https://huggingface.co/neuralmagic/Llama-2-7b-pruned70-retrained) finetuned for code generation tasks using the [Evolved CodeAlpaca](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1) dataset.
18
+ It was then quantized to 8-bit weights + activations and exported to deploy with [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models.
19
+
20
+ **Authors**: Neural Magic, Cerebras
21
+
22
+ ## Usage
23
+
24
+ Below we share some code snippets on how to get quickly started with running the model.
25
+
26
+ ### Sparse Transfer
27
+
28
+ By leveraging a pre-sparsified model's structure, you can efficiently fine-tune on new data, leading to reduced hyperparameter tuning, training times, and computational costs. Learn about this process [here](https://neuralmagic.github.io/docs-v2/get-started/transfer).
29
+
30
+ ### Running the model
31
+
32
+ For accelerated inference with sparsity on CPUs, deploy with [deepsparse](https://github.com/neuralmagic/deepsparse).
33
+
34
+ ```python
35
+ # pip install deepsparse[llm]
36
+ from deepsparse import TextGeneration
37
+
38
+ model = TextGeneration(model_path="hf:neuralmagic/Llama-2-7b-pruned70-retrained-evolcodealpaca-quant-ds")
39
+
40
+ input_text = "def fibonacci(n):\n"
41
+ outputs = model(input_text, max_new_tokens=100)
42
+ print(outputs.generations[0].text)
43
+ ```
44
+
45
+ ## Evaluation Benchmark Results
46
+
47
+ Model evaluation metrics and results.
48
+
49
+ | Benchmark | Metric | Llama-2-7b-instruct | Llama-2-7b-pruned70-retrained-evolcodealpaca-quant-ds |
50
+ |------------------------------------------------|---------------|-------------|-------------------------------|
51
+ | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | xxxx | xxxx |
52
+
53
+ ## Help
54
+
55
+ For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)