nm-research commited on
Commit
ff98444
1 Parent(s): f16c653

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -0
README.md ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ license_link: https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE
4
+ language:
5
+ - en
6
+ pipeline_tag: text-generation
7
+ base_model: Qwen/Qwen2.5-1.5B
8
+ tags:
9
+ - chat
10
+ - neuralmagic
11
+ - llmcompressor
12
+ ---
13
+
14
+ # Qwen2.5-1.5B-quantized.w8a8
15
+
16
+ ## Model Overview
17
+ - **Model Architecture:** Qwen2
18
+ - **Input:** Text
19
+ - **Output:** Text
20
+ - **Model Optimizations:**
21
+ - **Activation quantization:** INT8
22
+ - **Weight quantization:** INT8
23
+ - **Intended Use Cases:** Intended for commercial and research use multiple languages. Similarly to [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B), this models is intended for assistant-like chat.
24
+ - **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws).
25
+ - **Release Date:** 10/09/2024
26
+ - **Version:** 1.0
27
+ - **Model Developers:** Neural Magic
28
+
29
+ Quantized version of [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B).
30
+ It achieves an average score of 58.34 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 58.48.
31
+
32
+ ### Model Optimizations
33
+
34
+ This model was obtained by quantizing the weights of [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) to INT8 data type.
35
+ This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x).
36
+ Weight quantization also reduces disk size requirements by approximately 50%.
37
+
38
+ Only weights and activations of the linear operators within transformers blocks are quantized.
39
+ Weights are quantized with a symmetric static per-channel scheme, where a fixed linear scaling factor is applied between INT8 and floating point representations for each output channel dimension.
40
+ Activations are quantized with a symmetric dynamic per-token scheme, computing a linear scaling factor at runtime for each token between INT8 and floating point representations.
41
+
42
+ ## Deployment
43
+
44
+ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
45
+
46
+ ```python
47
+ from vllm import LLM, SamplingParams
48
+ from transformers import AutoTokenizer
49
+
50
+ model_id = "neuralmagic/Qwen2.5-1.5B-quantized.w8a8"
51
+ number_gpus = 1
52
+ max_model_len = 8192
53
+
54
+ sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
55
+
56
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
57
+
58
+ prompt = "Give me a short introduction to large language model."
59
+
60
+ llm = LLM(model=model_id, tensor_parallel_size=number_gpus, max_model_len=max_model_len)
61
+
62
+ outputs = llm.generate(prompt, sampling_params)
63
+
64
+ generated_text = outputs[0].outputs[0].text
65
+ print(generated_text)
66
+ ```
67
+
68
+ vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
69
+
70
+
71
+ ## Evaluation
72
+
73
+ The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
74
+ ```
75
+ lm_eval \
76
+ --model vllm \
77
+ --model_args pretrained="neuralmagic/Qwen2.5-1.5B-quantized.w8a8",dtype=auto,gpu_memory_utilization=0.9,add_bos_token=True,max_model_len=4096,enable_chunk_prefill=True,tensor_parallel_size=1 \
78
+ --tasks openllm \
79
+ --batch_size auto
80
+ ```
81
+
82
+ ### Accuracy
83
+
84
+ #### Open LLM Leaderboard evaluation scores
85
+ <table>
86
+ <tr>
87
+ <td><strong>Benchmark</strong>
88
+ </td>
89
+ <td><strong>Qwen2.5-1.5B</strong>
90
+ </td>
91
+ <td><strong>Qwen2.5-1.5B-quantized.w8a8 (this model)</strong>
92
+ </td>
93
+ <td><strong>Recovery</strong>
94
+ </td>
95
+ </tr>
96
+ <tr>
97
+ <td>MMLU (5-shot)
98
+ </td>
99
+ <td>60.98
100
+ </td>
101
+ <td>60.35
102
+ </td>
103
+ <td>99.0%
104
+ </td>
105
+ </tr>
106
+ <tr>
107
+ <td>ARC Challenge (25-shot)
108
+ </td>
109
+ <td>49.66
110
+ </td>
111
+ <td>49.66
112
+ </td>
113
+ <td>100.0%
114
+ </td>
115
+ </tr>
116
+ <tr>
117
+ <td>GSM-8K (5-shot, strict-match)
118
+ </td>
119
+ <td>60.96
120
+ </td>
121
+ <td>60.12
122
+ </td>
123
+ <td>98.6%
124
+ </td>
125
+ </tr>
126
+ <tr>
127
+ <td>Hellaswag (10-shot)
128
+ </td>
129
+ <td>67.65
130
+ </td>
131
+ <td>67.72
132
+ </td>
133
+ <td>100.1%
134
+ </td>
135
+ </tr>
136
+ <tr>
137
+ <td>Winogrande (5-shot)
138
+ </td>
139
+ <td>65.04
140
+ </td>
141
+ <td>66.06
142
+ </td>
143
+ <td>101.6%
144
+ </td>
145
+ </tr>
146
+ <tr>
147
+ <td>TruthfulQA (0-shot, mc2)
148
+ </td>
149
+ <td>46.57
150
+ </td>
151
+ <td>46.14
152
+ </td>
153
+ <td>99.1%
154
+ </td>
155
+ </tr>
156
+ <tr>
157
+ <td><strong>Average</strong>
158
+ </td>
159
+ <td><strong>58.48</strong>
160
+ </td>
161
+ <td><strong>58.34</strong>
162
+ </td>
163
+ <td><strong>99.8%</strong>
164
+ </td>
165
+ </tr>
166
+ </table>
167
+