|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- mlsum |
|
metrics: |
|
- rouge |
|
base_model: google/mt5-small |
|
model-index: |
|
- name: mt5-small-test-ged-mlsum_max_target_length_10 |
|
results: |
|
- task: |
|
type: text2text-generation |
|
name: Sequence-to-sequence Language Modeling |
|
dataset: |
|
name: mlsum |
|
type: mlsum |
|
args: es |
|
metrics: |
|
- type: rouge |
|
value: 74.8229 |
|
name: Rouge1 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-small-test-ged-mlsum_max_target_length_10 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3341 |
|
- Rouge1: 74.8229 |
|
- Rouge2: 68.1808 |
|
- Rougel: 74.8297 |
|
- Rougelsum: 74.8414 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:| |
|
| 0.5565 | 1.0 | 33296 | 0.3827 | 69.9041 | 62.821 | 69.8709 | 69.8924 | |
|
| 0.2636 | 2.0 | 66592 | 0.3552 | 72.0701 | 65.4937 | 72.0787 | 72.091 | |
|
| 0.2309 | 3.0 | 99888 | 0.3525 | 72.5071 | 65.8026 | 72.5132 | 72.512 | |
|
| 0.2109 | 4.0 | 133184 | 0.3346 | 74.0842 | 67.4776 | 74.0887 | 74.0968 | |
|
| 0.1972 | 5.0 | 166480 | 0.3398 | 74.6051 | 68.6024 | 74.6177 | 74.6365 | |
|
| 0.1867 | 6.0 | 199776 | 0.3283 | 74.9022 | 68.2146 | 74.9023 | 74.926 | |
|
| 0.1785 | 7.0 | 233072 | 0.3325 | 74.8631 | 68.2468 | 74.8843 | 74.9026 | |
|
| 0.1725 | 8.0 | 266368 | 0.3341 | 74.8229 | 68.1808 | 74.8297 | 74.8414 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|