librarian-bot's picture
Librarian Bot: Add base_model information to model
9a8bf31
|
raw
history blame
1.9 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
base_model: google/mt5-base
model-index:
- name: mt5-base-finetuned-xsum-mlsum___topic_text_google_mt5_base
results:
- task:
type: text2text-generation
name: Sequence-to-sequence Language Modeling
dataset:
name: mlsum
type: mlsum
args: es
metrics:
- type: rouge
value: 0.1582
name: Rouge1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-base-finetuned-xsum-mlsum___topic_text_google_mt5_base
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the mlsum dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Rouge1: 0.1582
- Rouge2: 0.0133
- Rougel: 0.1585
- Rougelsum: 0.1586
- Gen Len: 10.2326
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.0 | 1.0 | 66592 | nan | 0.1582 | 0.0133 | 0.1585 | 0.1586 | 10.2326 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1