whisper-small-it / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
823dcf8
|
raw
history blame
2.2 kB
---
language:
- it
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Italian
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0 it
type: mozilla-foundation/common_voice_11_0
config: it
split: test
args: it
metrics:
- type: wer
value: 12.303981501169467
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Italian
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 it dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2534
- Wer: 12.3040
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2737 | 2.01 | 1000 | 0.2728 | 13.4097 |
| 0.1536 | 4.02 | 2000 | 0.2611 | 12.9897 |
| 0.0905 | 6.03 | 3000 | 0.2686 | 12.9273 |
| 0.1301 | 8.04 | 4000 | 0.2534 | 12.3040 |
| 0.096 | 10.05 | 5000 | 0.2727 | 12.6130 |
| 0.0604 | 12.06 | 6000 | 0.2698 | 12.5027 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2