metadata
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: BertSeq
results: []
BertSeq
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2244
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6468 | 2.5 | 5 | 0.5917 | 1.0 | 1.0 | 1.0 | 1.0 |
0.5888 | 5.0 | 10 | 0.5269 | 1.0 | 1.0 | 1.0 | 1.0 |
0.5427 | 7.5 | 15 | 0.4736 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4919 | 10.0 | 20 | 0.4295 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4872 | 12.5 | 25 | 0.3927 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4447 | 15.0 | 30 | 0.3615 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4242 | 17.5 | 35 | 0.3353 | 1.0 | 1.0 | 1.0 | 1.0 |
0.4133 | 20.0 | 40 | 0.3128 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3889 | 22.5 | 45 | 0.2939 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3736 | 25.0 | 50 | 0.2780 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3736 | 27.5 | 55 | 0.2655 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3847 | 30.0 | 60 | 0.2557 | 1.0 | 1.0 | 1.0 | 1.0 |
0.382 | 32.5 | 65 | 0.2483 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3239 | 35.0 | 70 | 0.2418 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3254 | 37.5 | 75 | 0.2361 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3441 | 40.0 | 80 | 0.2316 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3435 | 42.5 | 85 | 0.2284 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3541 | 45.0 | 90 | 0.2262 | 1.0 | 1.0 | 1.0 | 1.0 |
0.2947 | 47.5 | 95 | 0.2248 | 1.0 | 1.0 | 1.0 | 1.0 |
0.3678 | 50.0 | 100 | 0.2244 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1
- Tokenizers 0.15.0