BertSeq / README.md
ncardus's picture
ncardus/SeqClassifier
87b4c65
|
raw
history blame
3.04 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: BertSeq
    results: []

BertSeq

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2244
  • Accuracy: 1.0
  • F1: 1.0
  • Precision: 1.0
  • Recall: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6468 2.5 5 0.5917 1.0 1.0 1.0 1.0
0.5888 5.0 10 0.5269 1.0 1.0 1.0 1.0
0.5427 7.5 15 0.4736 1.0 1.0 1.0 1.0
0.4919 10.0 20 0.4295 1.0 1.0 1.0 1.0
0.4872 12.5 25 0.3927 1.0 1.0 1.0 1.0
0.4447 15.0 30 0.3615 1.0 1.0 1.0 1.0
0.4242 17.5 35 0.3353 1.0 1.0 1.0 1.0
0.4133 20.0 40 0.3128 1.0 1.0 1.0 1.0
0.3889 22.5 45 0.2939 1.0 1.0 1.0 1.0
0.3736 25.0 50 0.2780 1.0 1.0 1.0 1.0
0.3736 27.5 55 0.2655 1.0 1.0 1.0 1.0
0.3847 30.0 60 0.2557 1.0 1.0 1.0 1.0
0.382 32.5 65 0.2483 1.0 1.0 1.0 1.0
0.3239 35.0 70 0.2418 1.0 1.0 1.0 1.0
0.3254 37.5 75 0.2361 1.0 1.0 1.0 1.0
0.3441 40.0 80 0.2316 1.0 1.0 1.0 1.0
0.3435 42.5 85 0.2284 1.0 1.0 1.0 1.0
0.3541 45.0 90 0.2262 1.0 1.0 1.0 1.0
0.2947 47.5 95 0.2248 1.0 1.0 1.0 1.0
0.3678 50.0 100 0.2244 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1
  • Tokenizers 0.15.0