metadata
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
- longt5
- summarization
model-index:
- name: longt5-mediasum
results:
- task:
type: summarization
name: Summarization
dataset:
name: xsum
type: xsum
config: default
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 22.7044
verified: true
- name: ROUGE-2
type: rouge
value: 5.616
verified: true
- name: ROUGE-L
type: rouge
value: 18.0111
verified: true
- name: ROUGE-LSUM
type: rouge
value: 18.1554
verified: true
- name: loss
type: loss
value: 2.1656227111816406
verified: true
- name: gen_len
type: gen_len
value: 18.3527
verified: true
- task:
type: summarization
name: Summarization
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
metrics:
- name: ROUGE-1
type: rouge
value: 21.1522
verified: true
- name: ROUGE-2
type: rouge
value: 8.1315
verified: true
- name: ROUGE-L
type: rouge
value: 16.6625
verified: true
- name: ROUGE-LSUM
type: rouge
value: 19.3603
verified: true
- name: loss
type: loss
value: 1.899269700050354
verified: true
- name: gen_len
type: gen_len
value: 17.853
verified: true
longt5-mediasum
This model is a fine-tuned version of google/long-t5-tglobal-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.0129
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 12
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.66 | 1.0 | 1667 | 2.0643 |
2.472 | 2.0 | 3334 | 2.0241 |
2.3574 | 3.0 | 5001 | 2.0129 |
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0a0+17540c5
- Datasets 2.3.2
- Tokenizers 0.12.1