nbroad's picture
nbroad HF staff
Update README.md
69930c7
|
raw
history blame
2.24 kB
metadata
license: mit
base_model: microsoft/xtremedistil-l12-h384-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: finer-139-xtremedistil-l12-h384
    results: []
datasets:
  - nlpaueb/finer-139

finer-139-xtremedistil-l12-h384

This model is a fine-tuned version of microsoft/xtremedistil-l12-h384-uncased on the finer-139 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0133
  • Precision: 0.6104
  • Recall: 0.6581
  • F1: 0.6334
  • Accuracy: 0.9961

Model description

Base model: microsoft/xtremedistil-l12-h384-uncased

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 512
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 512
  • total_eval_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0438 1.0 1759 0.0389 0.4777 0.1593 0.2389 0.9937
0.0266 2.0 3518 0.0234 0.5432 0.4129 0.4692 0.9949
0.0186 3.0 5277 0.0165 0.5980 0.5516 0.5739 0.9957
0.0154 4.0 7036 0.0143 0.5932 0.6447 0.6179 0.9959
0.0137 5.0 8795 0.0133 0.6104 0.6581 0.6334 0.9961

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0a0+b5021ba
  • Datasets 2.14.5
  • Tokenizers 0.14.1