|
--- |
|
license: mit |
|
base_model: microsoft/xtremedistil-l12-h384-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: finer-139-xtremedistil-l12-h384 |
|
results: [] |
|
datasets: |
|
- nlpaueb/finer-139 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finer-139-xtremedistil-l12-h384 |
|
|
|
This model is a fine-tuned version of [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) on the [finer-139](https://huggingface.co/datasets/nlpaueb/finer-139) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0133 |
|
- Precision: 0.6104 |
|
- Recall: 0.6581 |
|
- F1: 0.6334 |
|
- Accuracy: 0.9961 |
|
|
|
## Model description |
|
|
|
Base model: microsoft/xtremedistil-l12-h384-uncased |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 512 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- total_train_batch_size: 512 |
|
- total_eval_batch_size: 1024 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 5.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0438 | 1.0 | 1759 | 0.0389 | 0.4777 | 0.1593 | 0.2389 | 0.9937 | |
|
| 0.0266 | 2.0 | 3518 | 0.0234 | 0.5432 | 0.4129 | 0.4692 | 0.9949 | |
|
| 0.0186 | 3.0 | 5277 | 0.0165 | 0.5980 | 0.5516 | 0.5739 | 0.9957 | |
|
| 0.0154 | 4.0 | 7036 | 0.0143 | 0.5932 | 0.6447 | 0.6179 | 0.9959 | |
|
| 0.0137 | 5.0 | 8795 | 0.0133 | 0.6104 | 0.6581 | 0.6334 | 0.9961 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.1.0a0+b5021ba |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |