|
--- |
|
language: en |
|
license: cc-by-4.0 |
|
tags: |
|
- question-answering |
|
datasets: |
|
- squad_v2 |
|
metrics: |
|
- f1 |
|
- exact |
|
widget: |
|
- context: DeBERTa improves the BERT and RoBERTa models using disentangled attention |
|
and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa |
|
on a majority of NLU tasks with 80GB training data. In DeBERTa V3, we further |
|
improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient |
|
Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly |
|
improves the model performance on downstream tasks. You can find more technique |
|
details about the new model from our paper. Please check the official repository |
|
for more implementation details and updates. |
|
example_title: DeBERTa v3 Q1 |
|
text: How is DeBERTa version 3 different than previous ones? |
|
- context: DeBERTa improves the BERT and RoBERTa models using disentangled attention |
|
and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa |
|
on a majority of NLU tasks with 80GB training data. In DeBERTa V3, we further |
|
improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient |
|
Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly |
|
improves the model performance on downstream tasks. You can find more technique |
|
details about the new model from our paper. Please check the official repository |
|
for more implementation details and updates. |
|
example_title: DeBERTa v3 Q2 |
|
text: Where do I go to see new info about DeBERTa? |
|
model-index: |
|
- name: DeBERTa v3 xsmall squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: SQuAD2.0 |
|
type: question-answering |
|
metrics: |
|
- type: f1 |
|
value: 81.5 |
|
name: f1 |
|
- type: exact |
|
value: 78.3 |
|
name: exact |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 78.5341 |
|
name: Exact Match |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTk0ZGQ1YjU1YmQ5NTc2M2RmNjg2OGViYjcyODZkOTc1MDBkNmI5MDc0MzEyMzZmNDg3Yzc4ZTA3ZjAwM2M5ZiIsInZlcnNpb24iOjF9.ewKF-UetUoxKDeXgnM6vqy8nBC9c3qh7dLZhdQlgSxPut3LjAhpCh2fJGir-OVcfzWzxsPhcZQEpdnxR8oZnAA |
|
- type: f1 |
|
value: 81.6408 |
|
name: F1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTQwZDdjY2ZlOGVhM2E5NGM3OGNkNTk2NWFkYTg1Y2Q0YWFlYWJmMGIyZWM5ZjMyYTYyODUzMDA0NWU0ZGVkZCIsInZlcnNpb24iOjF9.BHJNhS1YisUIkjcpIMdwXurTewak9dkkpGXC2vHvUB4qUEuk_p3V-orhmeFyTxzLaWRwrZVGVz-NSfqFr4n1Ag |
|
- type: total |
|
value: 11870 |
|
name: total |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzNiZDQ3MDAyNzljMDI4NTRlYzZiZjE4ODJhZDhmZWE2ZjcwNjg2ZWJmNjUyMTUzZDk4ODNjNDExYTk1YWNlOCIsInZlcnNpb24iOjF9.3BlfmMvbV86Ua39ToqnMmgpGS0ZTew0UFFYWGyTkS3u7jaAXCfYkFkNJXw806f2uFFkKr1hqlzzKfivV0wUjCg |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 84.1741 |
|
name: Exact Match |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTA0MDVlYWI5NzdiNjllM2NmZTYwYmQ5YzE0ODgwOTA3MWZjZDkxNDFmZDM1OTQzMzgwNWI4NDc5NThhM2VhZSIsInZlcnNpb24iOjF9.lc2nUBxSu2_0_a5lyVsV51UAmkE8WHDTwGHvt3n9zvCbcJ1ylOg2xovF0_j0hZS16lv1DEw5XV8EW_ZS7mfvBg |
|
- type: f1 |
|
value: 91.0771 |
|
name: F1 |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODQxMjkxOWJlZTc2MmE5YzVmMjNhOTkwNDdiMDBhNWUwMDU3MDI1MmJiNDY4MjczYjIwM2U1NDhlYmZlZWQwMSIsInZlcnNpb24iOjF9.x_axHiBX5d3UIi1UbJT3kVbdX4kX9XFLQSg-l16-AAK9tiyutT-yaYJOi8LSb2lR4677tJpf3itu4eriJRU2Cg |
|
--- |
|
|
|
|
|
|
|
# DeBERTa v3 xsmall SQuAD 2.0 |
|
|
|
[Microsoft reports that this model can get 84.8/82.0](https://huggingface.co/microsoft/deberta-v3-xsmall#fine-tuning-on-nlu-tasks) on f1/em on the dev set. |
|
|
|
I got 81.5/78.3 but I only did one run and I didn't use the official squad2 evaluation script. I will do some more runs and show the results on the official script soon. |
|
|