debatenet-2-cat / README.md
nblokker's picture
Update README.md
78c6af3
|
raw
history blame
5.51 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
license: mit

nblokker/debatenet-2-cat

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

This model can be used to identify sentences that contain similar migration-related demands and propositions.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('nblokker/debatenet-2-cat')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('nblokker/debatenet-2-cat')
model = AutoModel.from_pretrained('nblokker/debatenet-2-cat')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 38 with parameters:

{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss

Parameters of the fit()-Method:

{
    "epochs": 15,
    "evaluation_steps": 120.5,
    "evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 120.5,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

@preprint{blokker2023,
  author = {Blokker, Nico and Blessing, Andre and Dayanik, Erenay and Kuhn, Jonas and Padó, Sebastian and Lapesa, Gabriella},
  note = {To appear in \textit{Language Resources and Evaluation}},
  title = {Between welcome culture and border fence: The {E}uropean refugee crisis in {G}erman newspaper reports},
  url = {https://arxiv.org/abs/2111.10142},
  year = 2023
}

@inproceedings{lapesa2020,
  abstract = {DEbateNet-migr15 is a manually annotated dataset for German which covers the public debate on immigration in 2015. The building block of our annotation is the political science notion of a claim, i.e., a statement made by a political actor (a politician, a party, or a group of citizens) that a specific action should be taken (e.g., vacant flats should be assigned to refugees). We identify claims in newspaper articles, assign them to actors and fine-grained categories and annotate their polarity and date. The aim of this paper is two-fold: first, we release the full DEbateNet-mig15 corpus and document it by means of a quantitative and qualitative analysis; second, we demonstrate its application in a discourse network analysis framework, which enables us to capture the temporal dynamics of the political debate.},
  address = {Online},
  author = {Lapesa, Gabriella and Blessing, Andre and Blokker, Nico and Dayanik, Erenay and Haunss, Sebastian and Kuhn, Jonas and Padó, Sebastian},
  booktitle = {Proceedings of LREC},
  pages = {919--927},
  title = {{DEbateNet-mig15}: {T}racing the 2015 Immigration Debate in {G}ermany Over Time},
  url = {https://www.aclweb.org/anthology/2020.lrec-1.115},
  year = 2020
}