nbaden's picture
End of training
262a5d6 verified
|
raw
history blame
2.33 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-300m-saha-yakut
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: sah
          split: test
          args: sah
        metrics:
          - name: Wer
            type: wer
            value: 0.5216510903426791

wav2vec2-large-xls-r-300m-saha-yakut

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6404
  • Wer: 0.5217

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 12
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 24
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 3.4483 150 3.1675 1.0
No log 6.8966 300 1.1392 0.8509
3.5746 10.3448 450 0.6103 0.5812
3.5746 13.7931 600 0.6152 0.5565
3.5746 17.2414 750 0.6420 0.5382
0.2138 20.6897 900 0.6344 0.5245
0.2138 24.1379 1050 0.6543 0.5303
0.1148 27.5862 1200 0.6404 0.5217

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1