|
--- |
|
datasets: |
|
- squad_v2 |
|
language: en |
|
license: mit |
|
pipeline_tag: question-answering |
|
tags: |
|
- electra |
|
- question-answering |
|
--- |
|
# Electra base model for QA (SQuAD 2.0) |
|
|
|
This model uses [electra-base](https://huggingface.co/google/electra-base-discriminator). |
|
|
|
## Training Data |
|
The models have been trained on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset. |
|
|
|
It can be used for question answering task. |
|
|
|
## Usage and Performance |
|
The trained model can be used like this: |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
# Load model & tokenizer |
|
electra_model = AutoModelForQuestionAnswering.from_pretrained('navteca/electra-base-squad2') |
|
electra_tokenizer = AutoTokenizer.from_pretrained('navteca/electra-base-squad2') |
|
|
|
# Get predictions |
|
nlp = pipeline('question-answering', model=electra_model, tokenizer=electra_tokenizer) |
|
|
|
result = nlp({ |
|
'question': 'How many people live in Berlin?', |
|
'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.' |
|
}) |
|
|
|
print(result) |
|
|
|
#{ |
|
# "answer": "3,520,031" |
|
# "end": 36, |
|
# "score": 0.99983448, |
|
# "start": 27, |
|
#} |
|
``` |
|
|