|
--- |
|
license: mit |
|
pipeline_tag: document-question-answering |
|
tags: |
|
- donut |
|
- image-to-text |
|
- vision |
|
widget: |
|
- text: "What is the invoice number?" |
|
src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" |
|
- text: "What is the purchase amount?" |
|
src: "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/contract.jpeg" |
|
--- |
|
|
|
# Donut (base-sized model, fine-tuned on DocVQA) |
|
|
|
Donut model fine-tuned on DocVQA. It was introduced in the paper [OCR-free Document Understanding Transformer](https://arxiv.org/abs/2111.15664) by Geewok et al. and first released in [this repository](https://github.com/clovaai/donut). |
|
|
|
Disclaimer: The team releasing Donut did not write a model card for this model so this model card has been written by the Hugging Face team. |
|
|
|
## Model description |
|
|
|
Donut consists of a vision encoder (Swin Transformer) and a text decoder (BART). Given an image, the encoder first encodes the image into a tensor of embeddings (of shape batch_size, seq_len, hidden_size), after which the decoder autoregressively generates text, conditioned on the encoding of the encoder. |
|
|
|
![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/donut_architecture.jpg) |
|
|
|
## Intended uses & limitations |
|
|
|
This model is fine-tuned on DocVQA, a document visual question answering dataset. |
|
|
|
We refer to the [documentation](https://huggingface.co/docs/transformers/main/en/model_doc/donut) which includes code examples. |
|
|
|
### BibTeX entry and citation info |
|
|
|
```bibtex |
|
@article{DBLP:journals/corr/abs-2111-15664, |
|
author = {Geewook Kim and |
|
Teakgyu Hong and |
|
Moonbin Yim and |
|
Jinyoung Park and |
|
Jinyeong Yim and |
|
Wonseok Hwang and |
|
Sangdoo Yun and |
|
Dongyoon Han and |
|
Seunghyun Park}, |
|
title = {Donut: Document Understanding Transformer without {OCR}}, |
|
journal = {CoRR}, |
|
volume = {abs/2111.15664}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2111.15664}, |
|
eprinttype = {arXiv}, |
|
eprint = {2111.15664}, |
|
timestamp = {Thu, 02 Dec 2021 10:50:44 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2111-15664.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |