cryptopunks-gan / README.md
nateraw's picture
Update README.md
1eb7a47
|
raw
history blame
1.73 kB
---
library_name: pytorch
tags:
- dcgan
---
# cryptopunks-gan
A DCGAN trained to generate novel Cryptopunks.
Check out the code by Teddy Koker [here](https://github.com/teddykoker/cryptopunks-gan).
## Generated Punks
Here are some punks generated by this model:
![](fake_samples_epoch_999.png)
## Usage
You can try it out yourself, or you can play with the [demo](https://huggingface.co/spaces/nateraw/cryptopunks-generator).
To use it yourself - make sure you have `torch`, `torchvision`, and `huggingface_hub` installed. Then, run the following to generate a grid of 64 random punks:
```python
import torch
from huggingface_hub import hf_hub_download
from torch import nn
from torchvision.utils import save_image
class Generator(nn.Module):
def __init__(self, nc=4, nz=100, ngf=64):
super(Generator, self).__init__()
self.network = nn.Sequential(
nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
nn.Tanh(),
)
def forward(self, input):
output = self.network(input)
return output
model = Generator()
weights_path = hf_hub_download('nateraw/cryptopunks-gan', 'generator.pth')
model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu')))
out = model(torch.randn(64, 100, 1, 1))
save_image(out, "punks.png", normalize=True)
```