nassersala commited on
Commit
9e1f213
·
verified ·
1 Parent(s): e60ee44

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +156 -3
  2. adapter_config.json +34 -0
  3. adapter_model.bin +3 -0
  4. checkpoint-147/README.md +202 -0
  5. checkpoint-147/adapter_config.json +34 -0
  6. checkpoint-147/adapter_model.safetensors +3 -0
  7. checkpoint-147/optimizer.pt +3 -0
  8. checkpoint-147/rng_state.pth +3 -0
  9. checkpoint-147/scheduler.pt +3 -0
  10. checkpoint-147/special_tokens_map.json +24 -0
  11. checkpoint-147/tokenizer.model +3 -0
  12. checkpoint-147/tokenizer_config.json +45 -0
  13. checkpoint-147/trainer_state.json +1146 -0
  14. checkpoint-147/training_args.bin +3 -0
  15. checkpoint-196/README.md +202 -0
  16. checkpoint-196/adapter_config.json +34 -0
  17. checkpoint-196/adapter_model.safetensors +3 -0
  18. checkpoint-196/optimizer.pt +3 -0
  19. checkpoint-196/rng_state.pth +3 -0
  20. checkpoint-196/scheduler.pt +3 -0
  21. checkpoint-196/special_tokens_map.json +24 -0
  22. checkpoint-196/tokenizer.model +3 -0
  23. checkpoint-196/tokenizer_config.json +45 -0
  24. checkpoint-196/trainer_state.json +1521 -0
  25. checkpoint-196/training_args.bin +3 -0
  26. checkpoint-49/README.md +202 -0
  27. checkpoint-49/adapter_config.json +34 -0
  28. checkpoint-49/adapter_model.safetensors +3 -0
  29. checkpoint-49/optimizer.pt +3 -0
  30. checkpoint-49/rng_state.pth +3 -0
  31. checkpoint-49/scheduler.pt +3 -0
  32. checkpoint-49/special_tokens_map.json +24 -0
  33. checkpoint-49/tokenizer.model +3 -0
  34. checkpoint-49/tokenizer_config.json +45 -0
  35. checkpoint-49/trainer_state.json +396 -0
  36. checkpoint-49/training_args.bin +3 -0
  37. checkpoint-98/README.md +202 -0
  38. checkpoint-98/adapter_config.json +34 -0
  39. checkpoint-98/adapter_model.safetensors +3 -0
  40. checkpoint-98/optimizer.pt +3 -0
  41. checkpoint-98/rng_state.pth +3 -0
  42. checkpoint-98/scheduler.pt +3 -0
  43. checkpoint-98/special_tokens_map.json +24 -0
  44. checkpoint-98/tokenizer.model +3 -0
  45. checkpoint-98/tokenizer_config.json +45 -0
  46. checkpoint-98/trainer_state.json +771 -0
  47. checkpoint-98/training_args.bin +3 -0
  48. config.json +43 -0
  49. special_tokens_map.json +24 -0
  50. tokenizer.model +3 -0
README.md CHANGED
@@ -1,3 +1,156 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
7
+ model-index:
8
+ - name: outputs/lora-out
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
21
+ model_type: LlamaForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+
24
+ load_in_8bit: true
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: burkelibbey/colors
30
+ type:
31
+ field_instruction: color
32
+ field_output: description
33
+ conversation: chatml
34
+ chat_template: chatml
35
+
36
+ dataset_prepared_path:
37
+ val_set_size: 0.05
38
+ output_dir: ./outputs/lora-out
39
+
40
+ sequence_len: 4096
41
+ sample_packing: true
42
+ eval_sample_packing: false
43
+ pad_to_sequence_len: true
44
+
45
+ adapter: lora
46
+ lora_model_dir:
47
+ lora_r: 32
48
+ lora_alpha: 16
49
+ lora_dropout: 0.05
50
+ lora_target_linear: true
51
+ lora_fan_in_fan_out:
52
+
53
+ wandb_project:
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_name:
57
+ wandb_log_model:
58
+
59
+ gradient_accumulation_steps: 4
60
+ micro_batch_size: 2
61
+ num_epochs: 4
62
+ optimizer: adamw_bnb_8bit
63
+ lr_scheduler: cosine
64
+ learning_rate: 0.0002
65
+
66
+ train_on_inputs: false
67
+ group_by_length: false
68
+ bf16: auto
69
+ fp16:
70
+ tf32: false
71
+
72
+ gradient_checkpointing: true
73
+ early_stopping_patience:
74
+ resume_from_checkpoint:
75
+ local_rank:
76
+ logging_steps: 1
77
+ xformers_attention:
78
+ flash_attention: true
79
+
80
+ warmup_steps: 10
81
+ evals_per_epoch: 4
82
+ saves_per_epoch: 1
83
+ debug:
84
+ deepspeed:
85
+ weight_decay: 0.0
86
+ fsdp:
87
+ fsdp_config:
88
+ special_tokens:
89
+
90
+ ```
91
+
92
+ </details><br>
93
+
94
+ # outputs/lora-out
95
+
96
+ This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the None dataset.
97
+ It achieves the following results on the evaluation set:
98
+ - Loss: 1.2375
99
+
100
+ ## Model description
101
+
102
+ More information needed
103
+
104
+ ## Intended uses & limitations
105
+
106
+ More information needed
107
+
108
+ ## Training and evaluation data
109
+
110
+ More information needed
111
+
112
+ ## Training procedure
113
+
114
+ ### Training hyperparameters
115
+
116
+ The following hyperparameters were used during training:
117
+ - learning_rate: 0.0002
118
+ - train_batch_size: 2
119
+ - eval_batch_size: 2
120
+ - seed: 42
121
+ - gradient_accumulation_steps: 4
122
+ - total_train_batch_size: 8
123
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
124
+ - lr_scheduler_type: cosine
125
+ - lr_scheduler_warmup_steps: 10
126
+ - num_epochs: 4
127
+
128
+ ### Training results
129
+
130
+ | Training Loss | Epoch | Step | Validation Loss |
131
+ |:-------------:|:------:|:----:|:---------------:|
132
+ | 2.7509 | 0.0204 | 1 | 2.6902 |
133
+ | 1.8064 | 0.2653 | 13 | 1.6735 |
134
+ | 1.5513 | 0.5306 | 26 | 1.4832 |
135
+ | 1.482 | 0.7959 | 39 | 1.4111 |
136
+ | 1.392 | 1.0408 | 52 | 1.3677 |
137
+ | 1.3414 | 1.3061 | 65 | 1.3319 |
138
+ | 1.3213 | 1.5714 | 78 | 1.3029 |
139
+ | 1.3028 | 1.8367 | 91 | 1.2795 |
140
+ | 1.2761 | 2.0816 | 104 | 1.2697 |
141
+ | 1.2509 | 2.3469 | 117 | 1.2587 |
142
+ | 1.2884 | 2.6122 | 130 | 1.2472 |
143
+ | 1.254 | 2.8776 | 143 | 1.2410 |
144
+ | 1.2523 | 3.1224 | 156 | 1.2403 |
145
+ | 1.2468 | 3.3878 | 169 | 1.2385 |
146
+ | 1.2476 | 3.6531 | 182 | 1.2370 |
147
+ | 1.2366 | 3.9184 | 195 | 1.2375 |
148
+
149
+
150
+ ### Framework versions
151
+
152
+ - PEFT 0.10.0
153
+ - Transformers 4.40.2
154
+ - Pytorch 2.1.2+cu118
155
+ - Datasets 2.19.1
156
+ - Tokenizers 0.19.1
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1f20d120db2b5b6953281cb7fa6e550c36182e6da8f44b598738a5995d5be6f
3
+ size 101036698
checkpoint-147/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-147/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-147/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb2ebdaf4b36ef443d056e4e52b5f0bf8223038232557b97bb7ce888df4d3c48
3
+ size 100966336
checkpoint-147/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88cf550811bb96f9852bdb7a8952d49f6f0bf413e95b0759a8db28fcab406988
3
+ size 50916644
checkpoint-147/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4e8611d6bcf761201e741bdb2188a6ac976702d2e3f1a3ecc21fff90ea8a001
3
+ size 14244
checkpoint-147/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83c1e2e1bea1da15cd4a47196fc191277510622d916f0b4b5e8c95f3258d5825
3
+ size 1064
checkpoint-147/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-147/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-147/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
checkpoint-147/trainer_state.json ADDED
@@ -0,0 +1,1146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.9591836734693877,
5
+ "eval_steps": 13,
6
+ "global_step": 147,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02040816326530612,
13
+ "grad_norm": 0.7881951332092285,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.7509,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02040816326530612,
20
+ "eval_loss": 2.6902382373809814,
21
+ "eval_runtime": 269.5606,
22
+ "eval_samples_per_second": 6.288,
23
+ "eval_steps_per_second": 3.146,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.04081632653061224,
28
+ "grad_norm": 0.789082407951355,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.7449,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.061224489795918366,
35
+ "grad_norm": 0.7354114055633545,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.7164,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.08163265306122448,
42
+ "grad_norm": 0.7292255759239197,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.7174,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.10204081632653061,
49
+ "grad_norm": 0.6898028254508972,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.6891,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.12244897959183673,
56
+ "grad_norm": 0.6861400604248047,
57
+ "learning_rate": 0.00012,
58
+ "loss": 2.6545,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.14285714285714285,
63
+ "grad_norm": 0.7510350346565247,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.5656,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.16326530612244897,
70
+ "grad_norm": 0.8011165261268616,
71
+ "learning_rate": 0.00016,
72
+ "loss": 2.4519,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1836734693877551,
77
+ "grad_norm": 0.8624005317687988,
78
+ "learning_rate": 0.00018,
79
+ "loss": 2.3178,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.20408163265306123,
84
+ "grad_norm": 0.8004987835884094,
85
+ "learning_rate": 0.0002,
86
+ "loss": 2.1783,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.22448979591836735,
91
+ "grad_norm": 0.6362400054931641,
92
+ "learning_rate": 0.000199985736255971,
93
+ "loss": 2.0252,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.24489795918367346,
98
+ "grad_norm": 0.7930936217308044,
99
+ "learning_rate": 0.0001999429490929718,
100
+ "loss": 1.8839,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2653061224489796,
105
+ "grad_norm": 0.5149843096733093,
106
+ "learning_rate": 0.00019987165071710527,
107
+ "loss": 1.8064,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2653061224489796,
112
+ "eval_loss": 1.6734941005706787,
113
+ "eval_runtime": 271.2615,
114
+ "eval_samples_per_second": 6.249,
115
+ "eval_steps_per_second": 3.126,
116
+ "step": 13
117
+ },
118
+ {
119
+ "epoch": 0.2857142857142857,
120
+ "grad_norm": 0.42121434211730957,
121
+ "learning_rate": 0.00019977186146800707,
122
+ "loss": 1.7922,
123
+ "step": 14
124
+ },
125
+ {
126
+ "epoch": 0.30612244897959184,
127
+ "grad_norm": 0.3523242771625519,
128
+ "learning_rate": 0.0001996436098130433,
129
+ "loss": 1.7711,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 0.32653061224489793,
134
+ "grad_norm": 0.3384595215320587,
135
+ "learning_rate": 0.00019948693233918952,
136
+ "loss": 1.7152,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.3469387755102041,
141
+ "grad_norm": 0.34942421317100525,
142
+ "learning_rate": 0.00019930187374259337,
143
+ "loss": 1.7112,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.3673469387755102,
148
+ "grad_norm": 0.31712639331817627,
149
+ "learning_rate": 0.00019908848681582391,
150
+ "loss": 1.7059,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.3877551020408163,
155
+ "grad_norm": 0.2875436842441559,
156
+ "learning_rate": 0.00019884683243281116,
157
+ "loss": 1.6468,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.40816326530612246,
162
+ "grad_norm": 0.24433130025863647,
163
+ "learning_rate": 0.00019857697953148037,
164
+ "loss": 1.6408,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.42857142857142855,
169
+ "grad_norm": 0.21414674818515778,
170
+ "learning_rate": 0.00019827900509408581,
171
+ "loss": 1.616,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.4489795918367347,
176
+ "grad_norm": 0.21537622809410095,
177
+ "learning_rate": 0.00019795299412524945,
178
+ "loss": 1.609,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.46938775510204084,
183
+ "grad_norm": 0.2432074397802353,
184
+ "learning_rate": 0.00019759903962771156,
185
+ "loss": 1.6066,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.4897959183673469,
190
+ "grad_norm": 0.2359839379787445,
191
+ "learning_rate": 0.00019721724257579907,
192
+ "loss": 1.5851,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.5102040816326531,
197
+ "grad_norm": 0.22065888345241547,
198
+ "learning_rate": 0.00019680771188662044,
199
+ "loss": 1.5739,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.5306122448979592,
204
+ "grad_norm": 0.20339132845401764,
205
+ "learning_rate": 0.0001963705643889941,
206
+ "loss": 1.5513,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.5306122448979592,
211
+ "eval_loss": 1.4832030534744263,
212
+ "eval_runtime": 271.2449,
213
+ "eval_samples_per_second": 6.249,
214
+ "eval_steps_per_second": 3.126,
215
+ "step": 26
216
+ },
217
+ {
218
+ "epoch": 0.5510204081632653,
219
+ "grad_norm": 0.18875224888324738,
220
+ "learning_rate": 0.00019590592479012023,
221
+ "loss": 1.5378,
222
+ "step": 27
223
+ },
224
+ {
225
+ "epoch": 0.5714285714285714,
226
+ "grad_norm": 0.18564417958259583,
227
+ "learning_rate": 0.00019541392564000488,
228
+ "loss": 1.5212,
229
+ "step": 28
230
+ },
231
+ {
232
+ "epoch": 0.5918367346938775,
233
+ "grad_norm": 0.16226942837238312,
234
+ "learning_rate": 0.00019489470729364692,
235
+ "loss": 1.5391,
236
+ "step": 29
237
+ },
238
+ {
239
+ "epoch": 0.6122448979591837,
240
+ "grad_norm": 0.15650039911270142,
241
+ "learning_rate": 0.00019434841787099803,
242
+ "loss": 1.511,
243
+ "step": 30
244
+ },
245
+ {
246
+ "epoch": 0.6326530612244898,
247
+ "grad_norm": 0.15976540744304657,
248
+ "learning_rate": 0.00019377521321470805,
249
+ "loss": 1.5119,
250
+ "step": 31
251
+ },
252
+ {
253
+ "epoch": 0.6530612244897959,
254
+ "grad_norm": 0.16409288346767426,
255
+ "learning_rate": 0.00019317525684566685,
256
+ "loss": 1.4909,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.673469387755102,
261
+ "grad_norm": 0.15468019247055054,
262
+ "learning_rate": 0.00019254871991635598,
263
+ "loss": 1.4951,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.6938775510204082,
268
+ "grad_norm": 0.1462036371231079,
269
+ "learning_rate": 0.00019189578116202307,
270
+ "loss": 1.4643,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.7142857142857143,
275
+ "grad_norm": 0.1541963368654251,
276
+ "learning_rate": 0.00019121662684969335,
277
+ "loss": 1.5159,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.7346938775510204,
282
+ "grad_norm": 0.14798064529895782,
283
+ "learning_rate": 0.00019051145072503215,
284
+ "loss": 1.4741,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.7551020408163265,
289
+ "grad_norm": 0.13914817571640015,
290
+ "learning_rate": 0.00018978045395707418,
291
+ "loss": 1.4788,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.7755102040816326,
296
+ "grad_norm": 0.15608824789524078,
297
+ "learning_rate": 0.00018902384508083517,
298
+ "loss": 1.4687,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.7959183673469388,
303
+ "grad_norm": 0.14460116624832153,
304
+ "learning_rate": 0.00018824183993782192,
305
+ "loss": 1.482,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.7959183673469388,
310
+ "eval_loss": 1.411073088645935,
311
+ "eval_runtime": 271.292,
312
+ "eval_samples_per_second": 6.248,
313
+ "eval_steps_per_second": 3.126,
314
+ "step": 39
315
+ },
316
+ {
317
+ "epoch": 0.8163265306122449,
318
+ "grad_norm": 0.15740551054477692,
319
+ "learning_rate": 0.00018743466161445823,
320
+ "loss": 1.4486,
321
+ "step": 40
322
+ },
323
+ {
324
+ "epoch": 0.8367346938775511,
325
+ "grad_norm": 0.14149661362171173,
326
+ "learning_rate": 0.00018660254037844388,
327
+ "loss": 1.4353,
328
+ "step": 41
329
+ },
330
+ {
331
+ "epoch": 0.8571428571428571,
332
+ "grad_norm": 0.14034292101860046,
333
+ "learning_rate": 0.0001857457136130651,
334
+ "loss": 1.4523,
335
+ "step": 42
336
+ },
337
+ {
338
+ "epoch": 0.8775510204081632,
339
+ "grad_norm": 0.1487722396850586,
340
+ "learning_rate": 0.00018486442574947511,
341
+ "loss": 1.4095,
342
+ "step": 43
343
+ },
344
+ {
345
+ "epoch": 0.8979591836734694,
346
+ "grad_norm": 0.17400234937667847,
347
+ "learning_rate": 0.00018395892819696389,
348
+ "loss": 1.4414,
349
+ "step": 44
350
+ },
351
+ {
352
+ "epoch": 0.9183673469387755,
353
+ "grad_norm": 0.1741325408220291,
354
+ "learning_rate": 0.00018302947927123766,
355
+ "loss": 1.4379,
356
+ "step": 45
357
+ },
358
+ {
359
+ "epoch": 0.9387755102040817,
360
+ "grad_norm": 0.15319454669952393,
361
+ "learning_rate": 0.00018207634412072764,
362
+ "loss": 1.405,
363
+ "step": 46
364
+ },
365
+ {
366
+ "epoch": 0.9591836734693877,
367
+ "grad_norm": 0.15876264870166779,
368
+ "learning_rate": 0.00018109979465095013,
369
+ "loss": 1.4122,
370
+ "step": 47
371
+ },
372
+ {
373
+ "epoch": 0.9795918367346939,
374
+ "grad_norm": 0.17120805382728577,
375
+ "learning_rate": 0.00018010010944693848,
376
+ "loss": 1.4132,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 1.0,
381
+ "grad_norm": 0.1436116099357605,
382
+ "learning_rate": 0.00017907757369376985,
383
+ "loss": 1.416,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 1.0204081632653061,
388
+ "grad_norm": 0.1707429438829422,
389
+ "learning_rate": 0.0001780324790952092,
390
+ "loss": 1.3913,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 1.0204081632653061,
395
+ "grad_norm": 0.17117524147033691,
396
+ "learning_rate": 0.00017696512379049325,
397
+ "loss": 1.3963,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 1.0408163265306123,
402
+ "grad_norm": 0.13410089910030365,
403
+ "learning_rate": 0.0001758758122692791,
404
+ "loss": 1.392,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 1.0408163265306123,
409
+ "eval_loss": 1.3676769733428955,
410
+ "eval_runtime": 270.8566,
411
+ "eval_samples_per_second": 6.258,
412
+ "eval_steps_per_second": 3.131,
413
+ "step": 52
414
+ },
415
+ {
416
+ "epoch": 1.0612244897959184,
417
+ "grad_norm": 0.18877607583999634,
418
+ "learning_rate": 0.00017476485528478093,
419
+ "loss": 1.3854,
420
+ "step": 53
421
+ },
422
+ {
423
+ "epoch": 1.0816326530612246,
424
+ "grad_norm": 0.1752927452325821,
425
+ "learning_rate": 0.00017363256976511972,
426
+ "loss": 1.3759,
427
+ "step": 54
428
+ },
429
+ {
430
+ "epoch": 1.1020408163265305,
431
+ "grad_norm": 0.17180170118808746,
432
+ "learning_rate": 0.000172479278722912,
433
+ "loss": 1.3614,
434
+ "step": 55
435
+ },
436
+ {
437
+ "epoch": 1.1224489795918366,
438
+ "grad_norm": 0.1640290915966034,
439
+ "learning_rate": 0.00017130531116312203,
440
+ "loss": 1.3853,
441
+ "step": 56
442
+ },
443
+ {
444
+ "epoch": 1.1428571428571428,
445
+ "grad_norm": 0.2047068476676941,
446
+ "learning_rate": 0.0001701110019892053,
447
+ "loss": 1.3699,
448
+ "step": 57
449
+ },
450
+ {
451
+ "epoch": 1.163265306122449,
452
+ "grad_norm": 0.1835869997739792,
453
+ "learning_rate": 0.00016889669190756868,
454
+ "loss": 1.3403,
455
+ "step": 58
456
+ },
457
+ {
458
+ "epoch": 1.183673469387755,
459
+ "grad_norm": 0.16733241081237793,
460
+ "learning_rate": 0.00016766272733037576,
461
+ "loss": 1.3609,
462
+ "step": 59
463
+ },
464
+ {
465
+ "epoch": 1.2040816326530612,
466
+ "grad_norm": 0.178726926445961,
467
+ "learning_rate": 0.00016640946027672392,
468
+ "loss": 1.3651,
469
+ "step": 60
470
+ },
471
+ {
472
+ "epoch": 1.2244897959183674,
473
+ "grad_norm": 0.16719630360603333,
474
+ "learning_rate": 0.00016513724827222227,
475
+ "loss": 1.3676,
476
+ "step": 61
477
+ },
478
+ {
479
+ "epoch": 1.2448979591836735,
480
+ "grad_norm": 0.15999363362789154,
481
+ "learning_rate": 0.00016384645424699835,
482
+ "loss": 1.3651,
483
+ "step": 62
484
+ },
485
+ {
486
+ "epoch": 1.2653061224489797,
487
+ "grad_norm": 0.1705988198518753,
488
+ "learning_rate": 0.00016253744643216368,
489
+ "loss": 1.3757,
490
+ "step": 63
491
+ },
492
+ {
493
+ "epoch": 1.2857142857142856,
494
+ "grad_norm": 0.14996370673179626,
495
+ "learning_rate": 0.0001612105982547663,
496
+ "loss": 1.3474,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 1.306122448979592,
501
+ "grad_norm": 0.19127260148525238,
502
+ "learning_rate": 0.0001598662882312615,
503
+ "loss": 1.3414,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 1.306122448979592,
508
+ "eval_loss": 1.331880807876587,
509
+ "eval_runtime": 270.8424,
510
+ "eval_samples_per_second": 6.258,
511
+ "eval_steps_per_second": 3.131,
512
+ "step": 65
513
+ },
514
+ {
515
+ "epoch": 1.3265306122448979,
516
+ "grad_norm": 0.16125527024269104,
517
+ "learning_rate": 0.00015850489985953076,
518
+ "loss": 1.3509,
519
+ "step": 66
520
+ },
521
+ {
522
+ "epoch": 1.346938775510204,
523
+ "grad_norm": 0.1979473978281021,
524
+ "learning_rate": 0.00015712682150947923,
525
+ "loss": 1.3579,
526
+ "step": 67
527
+ },
528
+ {
529
+ "epoch": 1.3673469387755102,
530
+ "grad_norm": 0.18317992985248566,
531
+ "learning_rate": 0.00015573244631224365,
532
+ "loss": 1.3341,
533
+ "step": 68
534
+ },
535
+ {
536
+ "epoch": 1.3877551020408163,
537
+ "grad_norm": 0.1646898239850998,
538
+ "learning_rate": 0.0001543221720480419,
539
+ "loss": 1.3361,
540
+ "step": 69
541
+ },
542
+ {
543
+ "epoch": 1.4081632653061225,
544
+ "grad_norm": 0.1760271042585373,
545
+ "learning_rate": 0.00015289640103269625,
546
+ "loss": 1.358,
547
+ "step": 70
548
+ },
549
+ {
550
+ "epoch": 1.4285714285714286,
551
+ "grad_norm": 0.165283203125,
552
+ "learning_rate": 0.0001514555400028629,
553
+ "loss": 1.3072,
554
+ "step": 71
555
+ },
556
+ {
557
+ "epoch": 1.4489795918367347,
558
+ "grad_norm": 0.1507076472043991,
559
+ "learning_rate": 0.00015000000000000001,
560
+ "loss": 1.3133,
561
+ "step": 72
562
+ },
563
+ {
564
+ "epoch": 1.469387755102041,
565
+ "grad_norm": 0.16913647949695587,
566
+ "learning_rate": 0.00014853019625310813,
567
+ "loss": 1.3232,
568
+ "step": 73
569
+ },
570
+ {
571
+ "epoch": 1.489795918367347,
572
+ "grad_norm": 0.18266479671001434,
573
+ "learning_rate": 0.0001470465480602756,
574
+ "loss": 1.3512,
575
+ "step": 74
576
+ },
577
+ {
578
+ "epoch": 1.510204081632653,
579
+ "grad_norm": 0.19301828742027283,
580
+ "learning_rate": 0.0001455494786690634,
581
+ "loss": 1.3241,
582
+ "step": 75
583
+ },
584
+ {
585
+ "epoch": 1.5306122448979593,
586
+ "grad_norm": 0.16109652817249298,
587
+ "learning_rate": 0.00014403941515576344,
588
+ "loss": 1.3256,
589
+ "step": 76
590
+ },
591
+ {
592
+ "epoch": 1.5510204081632653,
593
+ "grad_norm": 0.17053867876529694,
594
+ "learning_rate": 0.00014251678830356408,
595
+ "loss": 1.3162,
596
+ "step": 77
597
+ },
598
+ {
599
+ "epoch": 1.5714285714285714,
600
+ "grad_norm": 0.17348544299602509,
601
+ "learning_rate": 0.00014098203247965875,
602
+ "loss": 1.3213,
603
+ "step": 78
604
+ },
605
+ {
606
+ "epoch": 1.5714285714285714,
607
+ "eval_loss": 1.3028697967529297,
608
+ "eval_runtime": 270.8095,
609
+ "eval_samples_per_second": 6.259,
610
+ "eval_steps_per_second": 3.131,
611
+ "step": 78
612
+ },
613
+ {
614
+ "epoch": 1.5918367346938775,
615
+ "grad_norm": 0.1703907549381256,
616
+ "learning_rate": 0.00013943558551133186,
617
+ "loss": 1.3073,
618
+ "step": 79
619
+ },
620
+ {
621
+ "epoch": 1.6122448979591837,
622
+ "grad_norm": 0.17313100397586823,
623
+ "learning_rate": 0.0001378778885610576,
624
+ "loss": 1.3232,
625
+ "step": 80
626
+ },
627
+ {
628
+ "epoch": 1.6326530612244898,
629
+ "grad_norm": 0.17237025499343872,
630
+ "learning_rate": 0.00013630938600064747,
631
+ "loss": 1.3406,
632
+ "step": 81
633
+ },
634
+ {
635
+ "epoch": 1.6530612244897958,
636
+ "grad_norm": 0.19658459722995758,
637
+ "learning_rate": 0.00013473052528448201,
638
+ "loss": 1.3114,
639
+ "step": 82
640
+ },
641
+ {
642
+ "epoch": 1.6734693877551021,
643
+ "grad_norm": 0.20599938929080963,
644
+ "learning_rate": 0.0001331417568218636,
645
+ "loss": 1.3288,
646
+ "step": 83
647
+ },
648
+ {
649
+ "epoch": 1.693877551020408,
650
+ "grad_norm": 0.17759399116039276,
651
+ "learning_rate": 0.00013154353384852558,
652
+ "loss": 1.2995,
653
+ "step": 84
654
+ },
655
+ {
656
+ "epoch": 1.7142857142857144,
657
+ "grad_norm": 0.18712250888347626,
658
+ "learning_rate": 0.00012993631229733582,
659
+ "loss": 1.2895,
660
+ "step": 85
661
+ },
662
+ {
663
+ "epoch": 1.7346938775510203,
664
+ "grad_norm": 0.1991330236196518,
665
+ "learning_rate": 0.00012832055066823038,
666
+ "loss": 1.2886,
667
+ "step": 86
668
+ },
669
+ {
670
+ "epoch": 1.7551020408163265,
671
+ "grad_norm": 0.22125203907489777,
672
+ "learning_rate": 0.00012669670989741517,
673
+ "loss": 1.3233,
674
+ "step": 87
675
+ },
676
+ {
677
+ "epoch": 1.7755102040816326,
678
+ "grad_norm": 0.2052813619375229,
679
+ "learning_rate": 0.00012506525322587207,
680
+ "loss": 1.3079,
681
+ "step": 88
682
+ },
683
+ {
684
+ "epoch": 1.7959183673469388,
685
+ "grad_norm": 0.19290736317634583,
686
+ "learning_rate": 0.00012342664606720822,
687
+ "loss": 1.3174,
688
+ "step": 89
689
+ },
690
+ {
691
+ "epoch": 1.816326530612245,
692
+ "grad_norm": 0.20912542939186096,
693
+ "learning_rate": 0.00012178135587488515,
694
+ "loss": 1.2915,
695
+ "step": 90
696
+ },
697
+ {
698
+ "epoch": 1.836734693877551,
699
+ "grad_norm": 0.20760588347911835,
700
+ "learning_rate": 0.00012012985200886602,
701
+ "loss": 1.3028,
702
+ "step": 91
703
+ },
704
+ {
705
+ "epoch": 1.836734693877551,
706
+ "eval_loss": 1.2795333862304688,
707
+ "eval_runtime": 270.6525,
708
+ "eval_samples_per_second": 6.263,
709
+ "eval_steps_per_second": 3.133,
710
+ "step": 91
711
+ },
712
+ {
713
+ "epoch": 1.8571428571428572,
714
+ "grad_norm": 0.1996900886297226,
715
+ "learning_rate": 0.00011847260560171896,
716
+ "loss": 1.3119,
717
+ "step": 92
718
+ },
719
+ {
720
+ "epoch": 1.8775510204081631,
721
+ "grad_norm": 0.23766876757144928,
722
+ "learning_rate": 0.00011681008942421483,
723
+ "loss": 1.2978,
724
+ "step": 93
725
+ },
726
+ {
727
+ "epoch": 1.8979591836734695,
728
+ "grad_norm": 0.19782397150993347,
729
+ "learning_rate": 0.00011514277775045768,
730
+ "loss": 1.2955,
731
+ "step": 94
732
+ },
733
+ {
734
+ "epoch": 1.9183673469387754,
735
+ "grad_norm": 0.22519494593143463,
736
+ "learning_rate": 0.00011347114622258612,
737
+ "loss": 1.2957,
738
+ "step": 95
739
+ },
740
+ {
741
+ "epoch": 1.9387755102040818,
742
+ "grad_norm": 0.2590245306491852,
743
+ "learning_rate": 0.00011179567171508463,
744
+ "loss": 1.2809,
745
+ "step": 96
746
+ },
747
+ {
748
+ "epoch": 1.9591836734693877,
749
+ "grad_norm": 0.2235420197248459,
750
+ "learning_rate": 0.00011011683219874323,
751
+ "loss": 1.2784,
752
+ "step": 97
753
+ },
754
+ {
755
+ "epoch": 1.9795918367346939,
756
+ "grad_norm": 0.285740464925766,
757
+ "learning_rate": 0.00010843510660430447,
758
+ "loss": 1.309,
759
+ "step": 98
760
+ },
761
+ {
762
+ "epoch": 2.0,
763
+ "grad_norm": 0.20554350316524506,
764
+ "learning_rate": 0.00010675097468583652,
765
+ "loss": 1.273,
766
+ "step": 99
767
+ },
768
+ {
769
+ "epoch": 2.020408163265306,
770
+ "grad_norm": 0.24468418955802917,
771
+ "learning_rate": 0.00010506491688387127,
772
+ "loss": 1.2833,
773
+ "step": 100
774
+ },
775
+ {
776
+ "epoch": 2.020408163265306,
777
+ "grad_norm": 0.21553528308868408,
778
+ "learning_rate": 0.00010337741418834684,
779
+ "loss": 1.2669,
780
+ "step": 101
781
+ },
782
+ {
783
+ "epoch": 2.0408163265306123,
784
+ "grad_norm": 0.22015659511089325,
785
+ "learning_rate": 0.0001016889480013931,
786
+ "loss": 1.2795,
787
+ "step": 102
788
+ },
789
+ {
790
+ "epoch": 2.061224489795918,
791
+ "grad_norm": 0.2028799206018448,
792
+ "learning_rate": 0.0001,
793
+ "loss": 1.2584,
794
+ "step": 103
795
+ },
796
+ {
797
+ "epoch": 2.0816326530612246,
798
+ "grad_norm": 0.23474323749542236,
799
+ "learning_rate": 9.83110519986069e-05,
800
+ "loss": 1.2761,
801
+ "step": 104
802
+ },
803
+ {
804
+ "epoch": 2.0816326530612246,
805
+ "eval_loss": 1.2696796655654907,
806
+ "eval_runtime": 270.6586,
807
+ "eval_samples_per_second": 6.263,
808
+ "eval_steps_per_second": 3.133,
809
+ "step": 104
810
+ },
811
+ {
812
+ "epoch": 2.1020408163265305,
813
+ "grad_norm": 0.21070216596126556,
814
+ "learning_rate": 9.662258581165319e-05,
815
+ "loss": 1.2808,
816
+ "step": 105
817
+ },
818
+ {
819
+ "epoch": 2.122448979591837,
820
+ "grad_norm": 0.21867221593856812,
821
+ "learning_rate": 9.493508311612874e-05,
822
+ "loss": 1.2873,
823
+ "step": 106
824
+ },
825
+ {
826
+ "epoch": 2.142857142857143,
827
+ "grad_norm": 0.21630822122097015,
828
+ "learning_rate": 9.324902531416349e-05,
829
+ "loss": 1.2527,
830
+ "step": 107
831
+ },
832
+ {
833
+ "epoch": 2.163265306122449,
834
+ "grad_norm": 0.2134082019329071,
835
+ "learning_rate": 9.156489339569554e-05,
836
+ "loss": 1.2755,
837
+ "step": 108
838
+ },
839
+ {
840
+ "epoch": 2.183673469387755,
841
+ "grad_norm": 0.22310714423656464,
842
+ "learning_rate": 8.98831678012568e-05,
843
+ "loss": 1.2512,
844
+ "step": 109
845
+ },
846
+ {
847
+ "epoch": 2.204081632653061,
848
+ "grad_norm": 0.2365124374628067,
849
+ "learning_rate": 8.820432828491542e-05,
850
+ "loss": 1.2725,
851
+ "step": 110
852
+ },
853
+ {
854
+ "epoch": 2.2244897959183674,
855
+ "grad_norm": 0.2086496651172638,
856
+ "learning_rate": 8.652885377741393e-05,
857
+ "loss": 1.2488,
858
+ "step": 111
859
+ },
860
+ {
861
+ "epoch": 2.2448979591836733,
862
+ "grad_norm": 0.20848101377487183,
863
+ "learning_rate": 8.485722224954237e-05,
864
+ "loss": 1.2793,
865
+ "step": 112
866
+ },
867
+ {
868
+ "epoch": 2.2653061224489797,
869
+ "grad_norm": 0.20784686505794525,
870
+ "learning_rate": 8.31899105757852e-05,
871
+ "loss": 1.2564,
872
+ "step": 113
873
+ },
874
+ {
875
+ "epoch": 2.2857142857142856,
876
+ "grad_norm": 0.21896174550056458,
877
+ "learning_rate": 8.15273943982811e-05,
878
+ "loss": 1.2515,
879
+ "step": 114
880
+ },
881
+ {
882
+ "epoch": 2.306122448979592,
883
+ "grad_norm": 0.21367855370044708,
884
+ "learning_rate": 7.987014799113397e-05,
885
+ "loss": 1.248,
886
+ "step": 115
887
+ },
888
+ {
889
+ "epoch": 2.326530612244898,
890
+ "grad_norm": 0.20891636610031128,
891
+ "learning_rate": 7.821864412511485e-05,
892
+ "loss": 1.2753,
893
+ "step": 116
894
+ },
895
+ {
896
+ "epoch": 2.3469387755102042,
897
+ "grad_norm": 0.2092975378036499,
898
+ "learning_rate": 7.65733539327918e-05,
899
+ "loss": 1.2509,
900
+ "step": 117
901
+ },
902
+ {
903
+ "epoch": 2.3469387755102042,
904
+ "eval_loss": 1.258699655532837,
905
+ "eval_runtime": 270.5384,
906
+ "eval_samples_per_second": 6.265,
907
+ "eval_steps_per_second": 3.134,
908
+ "step": 117
909
+ },
910
+ {
911
+ "epoch": 2.36734693877551,
912
+ "grad_norm": 0.1905972808599472,
913
+ "learning_rate": 7.493474677412794e-05,
914
+ "loss": 1.2516,
915
+ "step": 118
916
+ },
917
+ {
918
+ "epoch": 2.387755102040816,
919
+ "grad_norm": 0.19716158509254456,
920
+ "learning_rate": 7.330329010258483e-05,
921
+ "loss": 1.2665,
922
+ "step": 119
923
+ },
924
+ {
925
+ "epoch": 2.4081632653061225,
926
+ "grad_norm": 0.1953389048576355,
927
+ "learning_rate": 7.16794493317696e-05,
928
+ "loss": 1.2661,
929
+ "step": 120
930
+ },
931
+ {
932
+ "epoch": 2.4285714285714284,
933
+ "grad_norm": 0.1990067958831787,
934
+ "learning_rate": 7.006368770266421e-05,
935
+ "loss": 1.2619,
936
+ "step": 121
937
+ },
938
+ {
939
+ "epoch": 2.4489795918367347,
940
+ "grad_norm": 0.1954919546842575,
941
+ "learning_rate": 6.845646615147445e-05,
942
+ "loss": 1.2736,
943
+ "step": 122
944
+ },
945
+ {
946
+ "epoch": 2.4693877551020407,
947
+ "grad_norm": 0.18382853269577026,
948
+ "learning_rate": 6.685824317813643e-05,
949
+ "loss": 1.2732,
950
+ "step": 123
951
+ },
952
+ {
953
+ "epoch": 2.489795918367347,
954
+ "grad_norm": 0.18729491531848907,
955
+ "learning_rate": 6.526947471551798e-05,
956
+ "loss": 1.2509,
957
+ "step": 124
958
+ },
959
+ {
960
+ "epoch": 2.510204081632653,
961
+ "grad_norm": 0.2034740000963211,
962
+ "learning_rate": 6.369061399935255e-05,
963
+ "loss": 1.2829,
964
+ "step": 125
965
+ },
966
+ {
967
+ "epoch": 2.5306122448979593,
968
+ "grad_norm": 0.1952620893716812,
969
+ "learning_rate": 6.21221114389424e-05,
970
+ "loss": 1.2689,
971
+ "step": 126
972
+ },
973
+ {
974
+ "epoch": 2.5510204081632653,
975
+ "grad_norm": 0.1986168622970581,
976
+ "learning_rate": 6.0564414488668165e-05,
977
+ "loss": 1.2644,
978
+ "step": 127
979
+ },
980
+ {
981
+ "epoch": 2.571428571428571,
982
+ "grad_norm": 0.19526751339435577,
983
+ "learning_rate": 5.901796752034128e-05,
984
+ "loss": 1.265,
985
+ "step": 128
986
+ },
987
+ {
988
+ "epoch": 2.5918367346938775,
989
+ "grad_norm": 0.195367693901062,
990
+ "learning_rate": 5.748321169643596e-05,
991
+ "loss": 1.2782,
992
+ "step": 129
993
+ },
994
+ {
995
+ "epoch": 2.612244897959184,
996
+ "grad_norm": 0.18351928889751434,
997
+ "learning_rate": 5.596058484423656e-05,
998
+ "loss": 1.2884,
999
+ "step": 130
1000
+ },
1001
+ {
1002
+ "epoch": 2.612244897959184,
1003
+ "eval_loss": 1.2471545934677124,
1004
+ "eval_runtime": 270.4953,
1005
+ "eval_samples_per_second": 6.266,
1006
+ "eval_steps_per_second": 3.135,
1007
+ "step": 130
1008
+ },
1009
+ {
1010
+ "epoch": 2.63265306122449,
1011
+ "grad_norm": 0.2015760987997055,
1012
+ "learning_rate": 5.44505213309366e-05,
1013
+ "loss": 1.2536,
1014
+ "step": 131
1015
+ },
1016
+ {
1017
+ "epoch": 2.6530612244897958,
1018
+ "grad_norm": 0.1734190732240677,
1019
+ "learning_rate": 5.2953451939724454e-05,
1020
+ "loss": 1.2628,
1021
+ "step": 132
1022
+ },
1023
+ {
1024
+ "epoch": 2.673469387755102,
1025
+ "grad_norm": 0.214066281914711,
1026
+ "learning_rate": 5.146980374689192e-05,
1027
+ "loss": 1.2543,
1028
+ "step": 133
1029
+ },
1030
+ {
1031
+ "epoch": 2.693877551020408,
1032
+ "grad_norm": 0.17507924139499664,
1033
+ "learning_rate": 5.000000000000002e-05,
1034
+ "loss": 1.2665,
1035
+ "step": 134
1036
+ },
1037
+ {
1038
+ "epoch": 2.7142857142857144,
1039
+ "grad_norm": 0.1778109222650528,
1040
+ "learning_rate": 4.854445999713715e-05,
1041
+ "loss": 1.2789,
1042
+ "step": 135
1043
+ },
1044
+ {
1045
+ "epoch": 2.7346938775510203,
1046
+ "grad_norm": 0.1856827288866043,
1047
+ "learning_rate": 4.710359896730379e-05,
1048
+ "loss": 1.2481,
1049
+ "step": 136
1050
+ },
1051
+ {
1052
+ "epoch": 2.7551020408163263,
1053
+ "grad_norm": 0.17856694757938385,
1054
+ "learning_rate": 4.567782795195816e-05,
1055
+ "loss": 1.2732,
1056
+ "step": 137
1057
+ },
1058
+ {
1059
+ "epoch": 2.7755102040816326,
1060
+ "grad_norm": 0.21598489582538605,
1061
+ "learning_rate": 4.426755368775637e-05,
1062
+ "loss": 1.2525,
1063
+ "step": 138
1064
+ },
1065
+ {
1066
+ "epoch": 2.795918367346939,
1067
+ "grad_norm": 0.17308436334133148,
1068
+ "learning_rate": 4.287317849052075e-05,
1069
+ "loss": 1.2665,
1070
+ "step": 139
1071
+ },
1072
+ {
1073
+ "epoch": 2.816326530612245,
1074
+ "grad_norm": 0.19207212328910828,
1075
+ "learning_rate": 4.149510014046922e-05,
1076
+ "loss": 1.2681,
1077
+ "step": 140
1078
+ },
1079
+ {
1080
+ "epoch": 2.836734693877551,
1081
+ "grad_norm": 0.19626958668231964,
1082
+ "learning_rate": 4.013371176873849e-05,
1083
+ "loss": 1.2727,
1084
+ "step": 141
1085
+ },
1086
+ {
1087
+ "epoch": 2.857142857142857,
1088
+ "grad_norm": 0.1986483484506607,
1089
+ "learning_rate": 3.878940174523371e-05,
1090
+ "loss": 1.2414,
1091
+ "step": 142
1092
+ },
1093
+ {
1094
+ "epoch": 2.877551020408163,
1095
+ "grad_norm": 0.19369089603424072,
1096
+ "learning_rate": 3.746255356783632e-05,
1097
+ "loss": 1.254,
1098
+ "step": 143
1099
+ },
1100
+ {
1101
+ "epoch": 2.877551020408163,
1102
+ "eval_loss": 1.2410293817520142,
1103
+ "eval_runtime": 270.6762,
1104
+ "eval_samples_per_second": 6.262,
1105
+ "eval_steps_per_second": 3.133,
1106
+ "step": 143
1107
+ },
1108
+ {
1109
+ "epoch": 2.8979591836734695,
1110
+ "grad_norm": 0.20910531282424927,
1111
+ "learning_rate": 3.615354575300166e-05,
1112
+ "loss": 1.2541,
1113
+ "step": 144
1114
+ },
1115
+ {
1116
+ "epoch": 2.9183673469387754,
1117
+ "grad_norm": 0.19536806643009186,
1118
+ "learning_rate": 3.4862751727777797e-05,
1119
+ "loss": 1.2517,
1120
+ "step": 145
1121
+ },
1122
+ {
1123
+ "epoch": 2.938775510204082,
1124
+ "grad_norm": 0.18630966544151306,
1125
+ "learning_rate": 3.3590539723276083e-05,
1126
+ "loss": 1.2473,
1127
+ "step": 146
1128
+ },
1129
+ {
1130
+ "epoch": 2.9591836734693877,
1131
+ "grad_norm": 0.1874723732471466,
1132
+ "learning_rate": 3.233727266962425e-05,
1133
+ "loss": 1.244,
1134
+ "step": 147
1135
+ }
1136
+ ],
1137
+ "logging_steps": 1,
1138
+ "max_steps": 196,
1139
+ "num_input_tokens_seen": 0,
1140
+ "num_train_epochs": 4,
1141
+ "save_steps": 49,
1142
+ "total_flos": 3.0628052408991744e+16,
1143
+ "train_batch_size": 2,
1144
+ "trial_name": null,
1145
+ "trial_params": null
1146
+ }
checkpoint-147/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cc4ff61a4799ac22d5c627a0169a20cc75619ae1b5871f2d114f95284d87a6
3
+ size 5816
checkpoint-196/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-196/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-196/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7149dfd1479c35b75fc75c4e9be3785070da91bd7c29d040e9a259ea5111014
3
+ size 100966336
checkpoint-196/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96f2429392a17aa7909b16091d5a0b62592f80090a1a9943b203b1e1c29e66f8
3
+ size 50916644
checkpoint-196/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a160c2864b63ef158843056f3ba263b2da60c6bef707459f056731cde2e27043
3
+ size 14244
checkpoint-196/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e22ca0a50bab80d00c8b8910bffb983a348f8762b7cf025e6f8e64a05a938289
3
+ size 1064
checkpoint-196/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-196/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-196/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
checkpoint-196/trainer_state.json ADDED
@@ -0,0 +1,1521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.938775510204082,
5
+ "eval_steps": 13,
6
+ "global_step": 196,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02040816326530612,
13
+ "grad_norm": 0.7881951332092285,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.7509,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02040816326530612,
20
+ "eval_loss": 2.6902382373809814,
21
+ "eval_runtime": 269.5606,
22
+ "eval_samples_per_second": 6.288,
23
+ "eval_steps_per_second": 3.146,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.04081632653061224,
28
+ "grad_norm": 0.789082407951355,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.7449,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.061224489795918366,
35
+ "grad_norm": 0.7354114055633545,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.7164,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.08163265306122448,
42
+ "grad_norm": 0.7292255759239197,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.7174,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.10204081632653061,
49
+ "grad_norm": 0.6898028254508972,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.6891,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.12244897959183673,
56
+ "grad_norm": 0.6861400604248047,
57
+ "learning_rate": 0.00012,
58
+ "loss": 2.6545,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.14285714285714285,
63
+ "grad_norm": 0.7510350346565247,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.5656,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.16326530612244897,
70
+ "grad_norm": 0.8011165261268616,
71
+ "learning_rate": 0.00016,
72
+ "loss": 2.4519,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1836734693877551,
77
+ "grad_norm": 0.8624005317687988,
78
+ "learning_rate": 0.00018,
79
+ "loss": 2.3178,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.20408163265306123,
84
+ "grad_norm": 0.8004987835884094,
85
+ "learning_rate": 0.0002,
86
+ "loss": 2.1783,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.22448979591836735,
91
+ "grad_norm": 0.6362400054931641,
92
+ "learning_rate": 0.000199985736255971,
93
+ "loss": 2.0252,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.24489795918367346,
98
+ "grad_norm": 0.7930936217308044,
99
+ "learning_rate": 0.0001999429490929718,
100
+ "loss": 1.8839,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2653061224489796,
105
+ "grad_norm": 0.5149843096733093,
106
+ "learning_rate": 0.00019987165071710527,
107
+ "loss": 1.8064,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2653061224489796,
112
+ "eval_loss": 1.6734941005706787,
113
+ "eval_runtime": 271.2615,
114
+ "eval_samples_per_second": 6.249,
115
+ "eval_steps_per_second": 3.126,
116
+ "step": 13
117
+ },
118
+ {
119
+ "epoch": 0.2857142857142857,
120
+ "grad_norm": 0.42121434211730957,
121
+ "learning_rate": 0.00019977186146800707,
122
+ "loss": 1.7922,
123
+ "step": 14
124
+ },
125
+ {
126
+ "epoch": 0.30612244897959184,
127
+ "grad_norm": 0.3523242771625519,
128
+ "learning_rate": 0.0001996436098130433,
129
+ "loss": 1.7711,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 0.32653061224489793,
134
+ "grad_norm": 0.3384595215320587,
135
+ "learning_rate": 0.00019948693233918952,
136
+ "loss": 1.7152,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.3469387755102041,
141
+ "grad_norm": 0.34942421317100525,
142
+ "learning_rate": 0.00019930187374259337,
143
+ "loss": 1.7112,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.3673469387755102,
148
+ "grad_norm": 0.31712639331817627,
149
+ "learning_rate": 0.00019908848681582391,
150
+ "loss": 1.7059,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.3877551020408163,
155
+ "grad_norm": 0.2875436842441559,
156
+ "learning_rate": 0.00019884683243281116,
157
+ "loss": 1.6468,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.40816326530612246,
162
+ "grad_norm": 0.24433130025863647,
163
+ "learning_rate": 0.00019857697953148037,
164
+ "loss": 1.6408,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.42857142857142855,
169
+ "grad_norm": 0.21414674818515778,
170
+ "learning_rate": 0.00019827900509408581,
171
+ "loss": 1.616,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.4489795918367347,
176
+ "grad_norm": 0.21537622809410095,
177
+ "learning_rate": 0.00019795299412524945,
178
+ "loss": 1.609,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.46938775510204084,
183
+ "grad_norm": 0.2432074397802353,
184
+ "learning_rate": 0.00019759903962771156,
185
+ "loss": 1.6066,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.4897959183673469,
190
+ "grad_norm": 0.2359839379787445,
191
+ "learning_rate": 0.00019721724257579907,
192
+ "loss": 1.5851,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.5102040816326531,
197
+ "grad_norm": 0.22065888345241547,
198
+ "learning_rate": 0.00019680771188662044,
199
+ "loss": 1.5739,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.5306122448979592,
204
+ "grad_norm": 0.20339132845401764,
205
+ "learning_rate": 0.0001963705643889941,
206
+ "loss": 1.5513,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.5306122448979592,
211
+ "eval_loss": 1.4832030534744263,
212
+ "eval_runtime": 271.2449,
213
+ "eval_samples_per_second": 6.249,
214
+ "eval_steps_per_second": 3.126,
215
+ "step": 26
216
+ },
217
+ {
218
+ "epoch": 0.5510204081632653,
219
+ "grad_norm": 0.18875224888324738,
220
+ "learning_rate": 0.00019590592479012023,
221
+ "loss": 1.5378,
222
+ "step": 27
223
+ },
224
+ {
225
+ "epoch": 0.5714285714285714,
226
+ "grad_norm": 0.18564417958259583,
227
+ "learning_rate": 0.00019541392564000488,
228
+ "loss": 1.5212,
229
+ "step": 28
230
+ },
231
+ {
232
+ "epoch": 0.5918367346938775,
233
+ "grad_norm": 0.16226942837238312,
234
+ "learning_rate": 0.00019489470729364692,
235
+ "loss": 1.5391,
236
+ "step": 29
237
+ },
238
+ {
239
+ "epoch": 0.6122448979591837,
240
+ "grad_norm": 0.15650039911270142,
241
+ "learning_rate": 0.00019434841787099803,
242
+ "loss": 1.511,
243
+ "step": 30
244
+ },
245
+ {
246
+ "epoch": 0.6326530612244898,
247
+ "grad_norm": 0.15976540744304657,
248
+ "learning_rate": 0.00019377521321470805,
249
+ "loss": 1.5119,
250
+ "step": 31
251
+ },
252
+ {
253
+ "epoch": 0.6530612244897959,
254
+ "grad_norm": 0.16409288346767426,
255
+ "learning_rate": 0.00019317525684566685,
256
+ "loss": 1.4909,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.673469387755102,
261
+ "grad_norm": 0.15468019247055054,
262
+ "learning_rate": 0.00019254871991635598,
263
+ "loss": 1.4951,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.6938775510204082,
268
+ "grad_norm": 0.1462036371231079,
269
+ "learning_rate": 0.00019189578116202307,
270
+ "loss": 1.4643,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.7142857142857143,
275
+ "grad_norm": 0.1541963368654251,
276
+ "learning_rate": 0.00019121662684969335,
277
+ "loss": 1.5159,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.7346938775510204,
282
+ "grad_norm": 0.14798064529895782,
283
+ "learning_rate": 0.00019051145072503215,
284
+ "loss": 1.4741,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.7551020408163265,
289
+ "grad_norm": 0.13914817571640015,
290
+ "learning_rate": 0.00018978045395707418,
291
+ "loss": 1.4788,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.7755102040816326,
296
+ "grad_norm": 0.15608824789524078,
297
+ "learning_rate": 0.00018902384508083517,
298
+ "loss": 1.4687,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.7959183673469388,
303
+ "grad_norm": 0.14460116624832153,
304
+ "learning_rate": 0.00018824183993782192,
305
+ "loss": 1.482,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.7959183673469388,
310
+ "eval_loss": 1.411073088645935,
311
+ "eval_runtime": 271.292,
312
+ "eval_samples_per_second": 6.248,
313
+ "eval_steps_per_second": 3.126,
314
+ "step": 39
315
+ },
316
+ {
317
+ "epoch": 0.8163265306122449,
318
+ "grad_norm": 0.15740551054477692,
319
+ "learning_rate": 0.00018743466161445823,
320
+ "loss": 1.4486,
321
+ "step": 40
322
+ },
323
+ {
324
+ "epoch": 0.8367346938775511,
325
+ "grad_norm": 0.14149661362171173,
326
+ "learning_rate": 0.00018660254037844388,
327
+ "loss": 1.4353,
328
+ "step": 41
329
+ },
330
+ {
331
+ "epoch": 0.8571428571428571,
332
+ "grad_norm": 0.14034292101860046,
333
+ "learning_rate": 0.0001857457136130651,
334
+ "loss": 1.4523,
335
+ "step": 42
336
+ },
337
+ {
338
+ "epoch": 0.8775510204081632,
339
+ "grad_norm": 0.1487722396850586,
340
+ "learning_rate": 0.00018486442574947511,
341
+ "loss": 1.4095,
342
+ "step": 43
343
+ },
344
+ {
345
+ "epoch": 0.8979591836734694,
346
+ "grad_norm": 0.17400234937667847,
347
+ "learning_rate": 0.00018395892819696389,
348
+ "loss": 1.4414,
349
+ "step": 44
350
+ },
351
+ {
352
+ "epoch": 0.9183673469387755,
353
+ "grad_norm": 0.1741325408220291,
354
+ "learning_rate": 0.00018302947927123766,
355
+ "loss": 1.4379,
356
+ "step": 45
357
+ },
358
+ {
359
+ "epoch": 0.9387755102040817,
360
+ "grad_norm": 0.15319454669952393,
361
+ "learning_rate": 0.00018207634412072764,
362
+ "loss": 1.405,
363
+ "step": 46
364
+ },
365
+ {
366
+ "epoch": 0.9591836734693877,
367
+ "grad_norm": 0.15876264870166779,
368
+ "learning_rate": 0.00018109979465095013,
369
+ "loss": 1.4122,
370
+ "step": 47
371
+ },
372
+ {
373
+ "epoch": 0.9795918367346939,
374
+ "grad_norm": 0.17120805382728577,
375
+ "learning_rate": 0.00018010010944693848,
376
+ "loss": 1.4132,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 1.0,
381
+ "grad_norm": 0.1436116099357605,
382
+ "learning_rate": 0.00017907757369376985,
383
+ "loss": 1.416,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 1.0204081632653061,
388
+ "grad_norm": 0.1707429438829422,
389
+ "learning_rate": 0.0001780324790952092,
390
+ "loss": 1.3913,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 1.0204081632653061,
395
+ "grad_norm": 0.17117524147033691,
396
+ "learning_rate": 0.00017696512379049325,
397
+ "loss": 1.3963,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 1.0408163265306123,
402
+ "grad_norm": 0.13410089910030365,
403
+ "learning_rate": 0.0001758758122692791,
404
+ "loss": 1.392,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 1.0408163265306123,
409
+ "eval_loss": 1.3676769733428955,
410
+ "eval_runtime": 270.8566,
411
+ "eval_samples_per_second": 6.258,
412
+ "eval_steps_per_second": 3.131,
413
+ "step": 52
414
+ },
415
+ {
416
+ "epoch": 1.0612244897959184,
417
+ "grad_norm": 0.18877607583999634,
418
+ "learning_rate": 0.00017476485528478093,
419
+ "loss": 1.3854,
420
+ "step": 53
421
+ },
422
+ {
423
+ "epoch": 1.0816326530612246,
424
+ "grad_norm": 0.1752927452325821,
425
+ "learning_rate": 0.00017363256976511972,
426
+ "loss": 1.3759,
427
+ "step": 54
428
+ },
429
+ {
430
+ "epoch": 1.1020408163265305,
431
+ "grad_norm": 0.17180170118808746,
432
+ "learning_rate": 0.000172479278722912,
433
+ "loss": 1.3614,
434
+ "step": 55
435
+ },
436
+ {
437
+ "epoch": 1.1224489795918366,
438
+ "grad_norm": 0.1640290915966034,
439
+ "learning_rate": 0.00017130531116312203,
440
+ "loss": 1.3853,
441
+ "step": 56
442
+ },
443
+ {
444
+ "epoch": 1.1428571428571428,
445
+ "grad_norm": 0.2047068476676941,
446
+ "learning_rate": 0.0001701110019892053,
447
+ "loss": 1.3699,
448
+ "step": 57
449
+ },
450
+ {
451
+ "epoch": 1.163265306122449,
452
+ "grad_norm": 0.1835869997739792,
453
+ "learning_rate": 0.00016889669190756868,
454
+ "loss": 1.3403,
455
+ "step": 58
456
+ },
457
+ {
458
+ "epoch": 1.183673469387755,
459
+ "grad_norm": 0.16733241081237793,
460
+ "learning_rate": 0.00016766272733037576,
461
+ "loss": 1.3609,
462
+ "step": 59
463
+ },
464
+ {
465
+ "epoch": 1.2040816326530612,
466
+ "grad_norm": 0.178726926445961,
467
+ "learning_rate": 0.00016640946027672392,
468
+ "loss": 1.3651,
469
+ "step": 60
470
+ },
471
+ {
472
+ "epoch": 1.2244897959183674,
473
+ "grad_norm": 0.16719630360603333,
474
+ "learning_rate": 0.00016513724827222227,
475
+ "loss": 1.3676,
476
+ "step": 61
477
+ },
478
+ {
479
+ "epoch": 1.2448979591836735,
480
+ "grad_norm": 0.15999363362789154,
481
+ "learning_rate": 0.00016384645424699835,
482
+ "loss": 1.3651,
483
+ "step": 62
484
+ },
485
+ {
486
+ "epoch": 1.2653061224489797,
487
+ "grad_norm": 0.1705988198518753,
488
+ "learning_rate": 0.00016253744643216368,
489
+ "loss": 1.3757,
490
+ "step": 63
491
+ },
492
+ {
493
+ "epoch": 1.2857142857142856,
494
+ "grad_norm": 0.14996370673179626,
495
+ "learning_rate": 0.0001612105982547663,
496
+ "loss": 1.3474,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 1.306122448979592,
501
+ "grad_norm": 0.19127260148525238,
502
+ "learning_rate": 0.0001598662882312615,
503
+ "loss": 1.3414,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 1.306122448979592,
508
+ "eval_loss": 1.331880807876587,
509
+ "eval_runtime": 270.8424,
510
+ "eval_samples_per_second": 6.258,
511
+ "eval_steps_per_second": 3.131,
512
+ "step": 65
513
+ },
514
+ {
515
+ "epoch": 1.3265306122448979,
516
+ "grad_norm": 0.16125527024269104,
517
+ "learning_rate": 0.00015850489985953076,
518
+ "loss": 1.3509,
519
+ "step": 66
520
+ },
521
+ {
522
+ "epoch": 1.346938775510204,
523
+ "grad_norm": 0.1979473978281021,
524
+ "learning_rate": 0.00015712682150947923,
525
+ "loss": 1.3579,
526
+ "step": 67
527
+ },
528
+ {
529
+ "epoch": 1.3673469387755102,
530
+ "grad_norm": 0.18317992985248566,
531
+ "learning_rate": 0.00015573244631224365,
532
+ "loss": 1.3341,
533
+ "step": 68
534
+ },
535
+ {
536
+ "epoch": 1.3877551020408163,
537
+ "grad_norm": 0.1646898239850998,
538
+ "learning_rate": 0.0001543221720480419,
539
+ "loss": 1.3361,
540
+ "step": 69
541
+ },
542
+ {
543
+ "epoch": 1.4081632653061225,
544
+ "grad_norm": 0.1760271042585373,
545
+ "learning_rate": 0.00015289640103269625,
546
+ "loss": 1.358,
547
+ "step": 70
548
+ },
549
+ {
550
+ "epoch": 1.4285714285714286,
551
+ "grad_norm": 0.165283203125,
552
+ "learning_rate": 0.0001514555400028629,
553
+ "loss": 1.3072,
554
+ "step": 71
555
+ },
556
+ {
557
+ "epoch": 1.4489795918367347,
558
+ "grad_norm": 0.1507076472043991,
559
+ "learning_rate": 0.00015000000000000001,
560
+ "loss": 1.3133,
561
+ "step": 72
562
+ },
563
+ {
564
+ "epoch": 1.469387755102041,
565
+ "grad_norm": 0.16913647949695587,
566
+ "learning_rate": 0.00014853019625310813,
567
+ "loss": 1.3232,
568
+ "step": 73
569
+ },
570
+ {
571
+ "epoch": 1.489795918367347,
572
+ "grad_norm": 0.18266479671001434,
573
+ "learning_rate": 0.0001470465480602756,
574
+ "loss": 1.3512,
575
+ "step": 74
576
+ },
577
+ {
578
+ "epoch": 1.510204081632653,
579
+ "grad_norm": 0.19301828742027283,
580
+ "learning_rate": 0.0001455494786690634,
581
+ "loss": 1.3241,
582
+ "step": 75
583
+ },
584
+ {
585
+ "epoch": 1.5306122448979593,
586
+ "grad_norm": 0.16109652817249298,
587
+ "learning_rate": 0.00014403941515576344,
588
+ "loss": 1.3256,
589
+ "step": 76
590
+ },
591
+ {
592
+ "epoch": 1.5510204081632653,
593
+ "grad_norm": 0.17053867876529694,
594
+ "learning_rate": 0.00014251678830356408,
595
+ "loss": 1.3162,
596
+ "step": 77
597
+ },
598
+ {
599
+ "epoch": 1.5714285714285714,
600
+ "grad_norm": 0.17348544299602509,
601
+ "learning_rate": 0.00014098203247965875,
602
+ "loss": 1.3213,
603
+ "step": 78
604
+ },
605
+ {
606
+ "epoch": 1.5714285714285714,
607
+ "eval_loss": 1.3028697967529297,
608
+ "eval_runtime": 270.8095,
609
+ "eval_samples_per_second": 6.259,
610
+ "eval_steps_per_second": 3.131,
611
+ "step": 78
612
+ },
613
+ {
614
+ "epoch": 1.5918367346938775,
615
+ "grad_norm": 0.1703907549381256,
616
+ "learning_rate": 0.00013943558551133186,
617
+ "loss": 1.3073,
618
+ "step": 79
619
+ },
620
+ {
621
+ "epoch": 1.6122448979591837,
622
+ "grad_norm": 0.17313100397586823,
623
+ "learning_rate": 0.0001378778885610576,
624
+ "loss": 1.3232,
625
+ "step": 80
626
+ },
627
+ {
628
+ "epoch": 1.6326530612244898,
629
+ "grad_norm": 0.17237025499343872,
630
+ "learning_rate": 0.00013630938600064747,
631
+ "loss": 1.3406,
632
+ "step": 81
633
+ },
634
+ {
635
+ "epoch": 1.6530612244897958,
636
+ "grad_norm": 0.19658459722995758,
637
+ "learning_rate": 0.00013473052528448201,
638
+ "loss": 1.3114,
639
+ "step": 82
640
+ },
641
+ {
642
+ "epoch": 1.6734693877551021,
643
+ "grad_norm": 0.20599938929080963,
644
+ "learning_rate": 0.0001331417568218636,
645
+ "loss": 1.3288,
646
+ "step": 83
647
+ },
648
+ {
649
+ "epoch": 1.693877551020408,
650
+ "grad_norm": 0.17759399116039276,
651
+ "learning_rate": 0.00013154353384852558,
652
+ "loss": 1.2995,
653
+ "step": 84
654
+ },
655
+ {
656
+ "epoch": 1.7142857142857144,
657
+ "grad_norm": 0.18712250888347626,
658
+ "learning_rate": 0.00012993631229733582,
659
+ "loss": 1.2895,
660
+ "step": 85
661
+ },
662
+ {
663
+ "epoch": 1.7346938775510203,
664
+ "grad_norm": 0.1991330236196518,
665
+ "learning_rate": 0.00012832055066823038,
666
+ "loss": 1.2886,
667
+ "step": 86
668
+ },
669
+ {
670
+ "epoch": 1.7551020408163265,
671
+ "grad_norm": 0.22125203907489777,
672
+ "learning_rate": 0.00012669670989741517,
673
+ "loss": 1.3233,
674
+ "step": 87
675
+ },
676
+ {
677
+ "epoch": 1.7755102040816326,
678
+ "grad_norm": 0.2052813619375229,
679
+ "learning_rate": 0.00012506525322587207,
680
+ "loss": 1.3079,
681
+ "step": 88
682
+ },
683
+ {
684
+ "epoch": 1.7959183673469388,
685
+ "grad_norm": 0.19290736317634583,
686
+ "learning_rate": 0.00012342664606720822,
687
+ "loss": 1.3174,
688
+ "step": 89
689
+ },
690
+ {
691
+ "epoch": 1.816326530612245,
692
+ "grad_norm": 0.20912542939186096,
693
+ "learning_rate": 0.00012178135587488515,
694
+ "loss": 1.2915,
695
+ "step": 90
696
+ },
697
+ {
698
+ "epoch": 1.836734693877551,
699
+ "grad_norm": 0.20760588347911835,
700
+ "learning_rate": 0.00012012985200886602,
701
+ "loss": 1.3028,
702
+ "step": 91
703
+ },
704
+ {
705
+ "epoch": 1.836734693877551,
706
+ "eval_loss": 1.2795333862304688,
707
+ "eval_runtime": 270.6525,
708
+ "eval_samples_per_second": 6.263,
709
+ "eval_steps_per_second": 3.133,
710
+ "step": 91
711
+ },
712
+ {
713
+ "epoch": 1.8571428571428572,
714
+ "grad_norm": 0.1996900886297226,
715
+ "learning_rate": 0.00011847260560171896,
716
+ "loss": 1.3119,
717
+ "step": 92
718
+ },
719
+ {
720
+ "epoch": 1.8775510204081631,
721
+ "grad_norm": 0.23766876757144928,
722
+ "learning_rate": 0.00011681008942421483,
723
+ "loss": 1.2978,
724
+ "step": 93
725
+ },
726
+ {
727
+ "epoch": 1.8979591836734695,
728
+ "grad_norm": 0.19782397150993347,
729
+ "learning_rate": 0.00011514277775045768,
730
+ "loss": 1.2955,
731
+ "step": 94
732
+ },
733
+ {
734
+ "epoch": 1.9183673469387754,
735
+ "grad_norm": 0.22519494593143463,
736
+ "learning_rate": 0.00011347114622258612,
737
+ "loss": 1.2957,
738
+ "step": 95
739
+ },
740
+ {
741
+ "epoch": 1.9387755102040818,
742
+ "grad_norm": 0.2590245306491852,
743
+ "learning_rate": 0.00011179567171508463,
744
+ "loss": 1.2809,
745
+ "step": 96
746
+ },
747
+ {
748
+ "epoch": 1.9591836734693877,
749
+ "grad_norm": 0.2235420197248459,
750
+ "learning_rate": 0.00011011683219874323,
751
+ "loss": 1.2784,
752
+ "step": 97
753
+ },
754
+ {
755
+ "epoch": 1.9795918367346939,
756
+ "grad_norm": 0.285740464925766,
757
+ "learning_rate": 0.00010843510660430447,
758
+ "loss": 1.309,
759
+ "step": 98
760
+ },
761
+ {
762
+ "epoch": 2.0,
763
+ "grad_norm": 0.20554350316524506,
764
+ "learning_rate": 0.00010675097468583652,
765
+ "loss": 1.273,
766
+ "step": 99
767
+ },
768
+ {
769
+ "epoch": 2.020408163265306,
770
+ "grad_norm": 0.24468418955802917,
771
+ "learning_rate": 0.00010506491688387127,
772
+ "loss": 1.2833,
773
+ "step": 100
774
+ },
775
+ {
776
+ "epoch": 2.020408163265306,
777
+ "grad_norm": 0.21553528308868408,
778
+ "learning_rate": 0.00010337741418834684,
779
+ "loss": 1.2669,
780
+ "step": 101
781
+ },
782
+ {
783
+ "epoch": 2.0408163265306123,
784
+ "grad_norm": 0.22015659511089325,
785
+ "learning_rate": 0.0001016889480013931,
786
+ "loss": 1.2795,
787
+ "step": 102
788
+ },
789
+ {
790
+ "epoch": 2.061224489795918,
791
+ "grad_norm": 0.2028799206018448,
792
+ "learning_rate": 0.0001,
793
+ "loss": 1.2584,
794
+ "step": 103
795
+ },
796
+ {
797
+ "epoch": 2.0816326530612246,
798
+ "grad_norm": 0.23474323749542236,
799
+ "learning_rate": 9.83110519986069e-05,
800
+ "loss": 1.2761,
801
+ "step": 104
802
+ },
803
+ {
804
+ "epoch": 2.0816326530612246,
805
+ "eval_loss": 1.2696796655654907,
806
+ "eval_runtime": 270.6586,
807
+ "eval_samples_per_second": 6.263,
808
+ "eval_steps_per_second": 3.133,
809
+ "step": 104
810
+ },
811
+ {
812
+ "epoch": 2.1020408163265305,
813
+ "grad_norm": 0.21070216596126556,
814
+ "learning_rate": 9.662258581165319e-05,
815
+ "loss": 1.2808,
816
+ "step": 105
817
+ },
818
+ {
819
+ "epoch": 2.122448979591837,
820
+ "grad_norm": 0.21867221593856812,
821
+ "learning_rate": 9.493508311612874e-05,
822
+ "loss": 1.2873,
823
+ "step": 106
824
+ },
825
+ {
826
+ "epoch": 2.142857142857143,
827
+ "grad_norm": 0.21630822122097015,
828
+ "learning_rate": 9.324902531416349e-05,
829
+ "loss": 1.2527,
830
+ "step": 107
831
+ },
832
+ {
833
+ "epoch": 2.163265306122449,
834
+ "grad_norm": 0.2134082019329071,
835
+ "learning_rate": 9.156489339569554e-05,
836
+ "loss": 1.2755,
837
+ "step": 108
838
+ },
839
+ {
840
+ "epoch": 2.183673469387755,
841
+ "grad_norm": 0.22310714423656464,
842
+ "learning_rate": 8.98831678012568e-05,
843
+ "loss": 1.2512,
844
+ "step": 109
845
+ },
846
+ {
847
+ "epoch": 2.204081632653061,
848
+ "grad_norm": 0.2365124374628067,
849
+ "learning_rate": 8.820432828491542e-05,
850
+ "loss": 1.2725,
851
+ "step": 110
852
+ },
853
+ {
854
+ "epoch": 2.2244897959183674,
855
+ "grad_norm": 0.2086496651172638,
856
+ "learning_rate": 8.652885377741393e-05,
857
+ "loss": 1.2488,
858
+ "step": 111
859
+ },
860
+ {
861
+ "epoch": 2.2448979591836733,
862
+ "grad_norm": 0.20848101377487183,
863
+ "learning_rate": 8.485722224954237e-05,
864
+ "loss": 1.2793,
865
+ "step": 112
866
+ },
867
+ {
868
+ "epoch": 2.2653061224489797,
869
+ "grad_norm": 0.20784686505794525,
870
+ "learning_rate": 8.31899105757852e-05,
871
+ "loss": 1.2564,
872
+ "step": 113
873
+ },
874
+ {
875
+ "epoch": 2.2857142857142856,
876
+ "grad_norm": 0.21896174550056458,
877
+ "learning_rate": 8.15273943982811e-05,
878
+ "loss": 1.2515,
879
+ "step": 114
880
+ },
881
+ {
882
+ "epoch": 2.306122448979592,
883
+ "grad_norm": 0.21367855370044708,
884
+ "learning_rate": 7.987014799113397e-05,
885
+ "loss": 1.248,
886
+ "step": 115
887
+ },
888
+ {
889
+ "epoch": 2.326530612244898,
890
+ "grad_norm": 0.20891636610031128,
891
+ "learning_rate": 7.821864412511485e-05,
892
+ "loss": 1.2753,
893
+ "step": 116
894
+ },
895
+ {
896
+ "epoch": 2.3469387755102042,
897
+ "grad_norm": 0.2092975378036499,
898
+ "learning_rate": 7.65733539327918e-05,
899
+ "loss": 1.2509,
900
+ "step": 117
901
+ },
902
+ {
903
+ "epoch": 2.3469387755102042,
904
+ "eval_loss": 1.258699655532837,
905
+ "eval_runtime": 270.5384,
906
+ "eval_samples_per_second": 6.265,
907
+ "eval_steps_per_second": 3.134,
908
+ "step": 117
909
+ },
910
+ {
911
+ "epoch": 2.36734693877551,
912
+ "grad_norm": 0.1905972808599472,
913
+ "learning_rate": 7.493474677412794e-05,
914
+ "loss": 1.2516,
915
+ "step": 118
916
+ },
917
+ {
918
+ "epoch": 2.387755102040816,
919
+ "grad_norm": 0.19716158509254456,
920
+ "learning_rate": 7.330329010258483e-05,
921
+ "loss": 1.2665,
922
+ "step": 119
923
+ },
924
+ {
925
+ "epoch": 2.4081632653061225,
926
+ "grad_norm": 0.1953389048576355,
927
+ "learning_rate": 7.16794493317696e-05,
928
+ "loss": 1.2661,
929
+ "step": 120
930
+ },
931
+ {
932
+ "epoch": 2.4285714285714284,
933
+ "grad_norm": 0.1990067958831787,
934
+ "learning_rate": 7.006368770266421e-05,
935
+ "loss": 1.2619,
936
+ "step": 121
937
+ },
938
+ {
939
+ "epoch": 2.4489795918367347,
940
+ "grad_norm": 0.1954919546842575,
941
+ "learning_rate": 6.845646615147445e-05,
942
+ "loss": 1.2736,
943
+ "step": 122
944
+ },
945
+ {
946
+ "epoch": 2.4693877551020407,
947
+ "grad_norm": 0.18382853269577026,
948
+ "learning_rate": 6.685824317813643e-05,
949
+ "loss": 1.2732,
950
+ "step": 123
951
+ },
952
+ {
953
+ "epoch": 2.489795918367347,
954
+ "grad_norm": 0.18729491531848907,
955
+ "learning_rate": 6.526947471551798e-05,
956
+ "loss": 1.2509,
957
+ "step": 124
958
+ },
959
+ {
960
+ "epoch": 2.510204081632653,
961
+ "grad_norm": 0.2034740000963211,
962
+ "learning_rate": 6.369061399935255e-05,
963
+ "loss": 1.2829,
964
+ "step": 125
965
+ },
966
+ {
967
+ "epoch": 2.5306122448979593,
968
+ "grad_norm": 0.1952620893716812,
969
+ "learning_rate": 6.21221114389424e-05,
970
+ "loss": 1.2689,
971
+ "step": 126
972
+ },
973
+ {
974
+ "epoch": 2.5510204081632653,
975
+ "grad_norm": 0.1986168622970581,
976
+ "learning_rate": 6.0564414488668165e-05,
977
+ "loss": 1.2644,
978
+ "step": 127
979
+ },
980
+ {
981
+ "epoch": 2.571428571428571,
982
+ "grad_norm": 0.19526751339435577,
983
+ "learning_rate": 5.901796752034128e-05,
984
+ "loss": 1.265,
985
+ "step": 128
986
+ },
987
+ {
988
+ "epoch": 2.5918367346938775,
989
+ "grad_norm": 0.195367693901062,
990
+ "learning_rate": 5.748321169643596e-05,
991
+ "loss": 1.2782,
992
+ "step": 129
993
+ },
994
+ {
995
+ "epoch": 2.612244897959184,
996
+ "grad_norm": 0.18351928889751434,
997
+ "learning_rate": 5.596058484423656e-05,
998
+ "loss": 1.2884,
999
+ "step": 130
1000
+ },
1001
+ {
1002
+ "epoch": 2.612244897959184,
1003
+ "eval_loss": 1.2471545934677124,
1004
+ "eval_runtime": 270.4953,
1005
+ "eval_samples_per_second": 6.266,
1006
+ "eval_steps_per_second": 3.135,
1007
+ "step": 130
1008
+ },
1009
+ {
1010
+ "epoch": 2.63265306122449,
1011
+ "grad_norm": 0.2015760987997055,
1012
+ "learning_rate": 5.44505213309366e-05,
1013
+ "loss": 1.2536,
1014
+ "step": 131
1015
+ },
1016
+ {
1017
+ "epoch": 2.6530612244897958,
1018
+ "grad_norm": 0.1734190732240677,
1019
+ "learning_rate": 5.2953451939724454e-05,
1020
+ "loss": 1.2628,
1021
+ "step": 132
1022
+ },
1023
+ {
1024
+ "epoch": 2.673469387755102,
1025
+ "grad_norm": 0.214066281914711,
1026
+ "learning_rate": 5.146980374689192e-05,
1027
+ "loss": 1.2543,
1028
+ "step": 133
1029
+ },
1030
+ {
1031
+ "epoch": 2.693877551020408,
1032
+ "grad_norm": 0.17507924139499664,
1033
+ "learning_rate": 5.000000000000002e-05,
1034
+ "loss": 1.2665,
1035
+ "step": 134
1036
+ },
1037
+ {
1038
+ "epoch": 2.7142857142857144,
1039
+ "grad_norm": 0.1778109222650528,
1040
+ "learning_rate": 4.854445999713715e-05,
1041
+ "loss": 1.2789,
1042
+ "step": 135
1043
+ },
1044
+ {
1045
+ "epoch": 2.7346938775510203,
1046
+ "grad_norm": 0.1856827288866043,
1047
+ "learning_rate": 4.710359896730379e-05,
1048
+ "loss": 1.2481,
1049
+ "step": 136
1050
+ },
1051
+ {
1052
+ "epoch": 2.7551020408163263,
1053
+ "grad_norm": 0.17856694757938385,
1054
+ "learning_rate": 4.567782795195816e-05,
1055
+ "loss": 1.2732,
1056
+ "step": 137
1057
+ },
1058
+ {
1059
+ "epoch": 2.7755102040816326,
1060
+ "grad_norm": 0.21598489582538605,
1061
+ "learning_rate": 4.426755368775637e-05,
1062
+ "loss": 1.2525,
1063
+ "step": 138
1064
+ },
1065
+ {
1066
+ "epoch": 2.795918367346939,
1067
+ "grad_norm": 0.17308436334133148,
1068
+ "learning_rate": 4.287317849052075e-05,
1069
+ "loss": 1.2665,
1070
+ "step": 139
1071
+ },
1072
+ {
1073
+ "epoch": 2.816326530612245,
1074
+ "grad_norm": 0.19207212328910828,
1075
+ "learning_rate": 4.149510014046922e-05,
1076
+ "loss": 1.2681,
1077
+ "step": 140
1078
+ },
1079
+ {
1080
+ "epoch": 2.836734693877551,
1081
+ "grad_norm": 0.19626958668231964,
1082
+ "learning_rate": 4.013371176873849e-05,
1083
+ "loss": 1.2727,
1084
+ "step": 141
1085
+ },
1086
+ {
1087
+ "epoch": 2.857142857142857,
1088
+ "grad_norm": 0.1986483484506607,
1089
+ "learning_rate": 3.878940174523371e-05,
1090
+ "loss": 1.2414,
1091
+ "step": 142
1092
+ },
1093
+ {
1094
+ "epoch": 2.877551020408163,
1095
+ "grad_norm": 0.19369089603424072,
1096
+ "learning_rate": 3.746255356783632e-05,
1097
+ "loss": 1.254,
1098
+ "step": 143
1099
+ },
1100
+ {
1101
+ "epoch": 2.877551020408163,
1102
+ "eval_loss": 1.2410293817520142,
1103
+ "eval_runtime": 270.6762,
1104
+ "eval_samples_per_second": 6.262,
1105
+ "eval_steps_per_second": 3.133,
1106
+ "step": 143
1107
+ },
1108
+ {
1109
+ "epoch": 2.8979591836734695,
1110
+ "grad_norm": 0.20910531282424927,
1111
+ "learning_rate": 3.615354575300166e-05,
1112
+ "loss": 1.2541,
1113
+ "step": 144
1114
+ },
1115
+ {
1116
+ "epoch": 2.9183673469387754,
1117
+ "grad_norm": 0.19536806643009186,
1118
+ "learning_rate": 3.4862751727777797e-05,
1119
+ "loss": 1.2517,
1120
+ "step": 145
1121
+ },
1122
+ {
1123
+ "epoch": 2.938775510204082,
1124
+ "grad_norm": 0.18630966544151306,
1125
+ "learning_rate": 3.3590539723276083e-05,
1126
+ "loss": 1.2473,
1127
+ "step": 146
1128
+ },
1129
+ {
1130
+ "epoch": 2.9591836734693877,
1131
+ "grad_norm": 0.1874723732471466,
1132
+ "learning_rate": 3.233727266962425e-05,
1133
+ "loss": 1.244,
1134
+ "step": 147
1135
+ },
1136
+ {
1137
+ "epoch": 2.979591836734694,
1138
+ "grad_norm": 0.1764463186264038,
1139
+ "learning_rate": 3.110330809243134e-05,
1140
+ "loss": 1.2465,
1141
+ "step": 148
1142
+ },
1143
+ {
1144
+ "epoch": 3.0,
1145
+ "grad_norm": 0.16570010781288147,
1146
+ "learning_rate": 2.9888998010794743e-05,
1147
+ "loss": 1.2443,
1148
+ "step": 149
1149
+ },
1150
+ {
1151
+ "epoch": 3.020408163265306,
1152
+ "grad_norm": 0.18820856511592865,
1153
+ "learning_rate": 2.869468883687798e-05,
1154
+ "loss": 1.2694,
1155
+ "step": 150
1156
+ },
1157
+ {
1158
+ "epoch": 3.020408163265306,
1159
+ "grad_norm": 0.2009415626525879,
1160
+ "learning_rate": 2.7520721277088024e-05,
1161
+ "loss": 1.2185,
1162
+ "step": 151
1163
+ },
1164
+ {
1165
+ "epoch": 3.0408163265306123,
1166
+ "grad_norm": 0.1824546605348587,
1167
+ "learning_rate": 2.6367430234880284e-05,
1168
+ "loss": 1.2222,
1169
+ "step": 152
1170
+ },
1171
+ {
1172
+ "epoch": 3.061224489795918,
1173
+ "grad_norm": 0.180531844496727,
1174
+ "learning_rate": 2.523514471521913e-05,
1175
+ "loss": 1.2592,
1176
+ "step": 153
1177
+ },
1178
+ {
1179
+ "epoch": 3.0816326530612246,
1180
+ "grad_norm": 0.17422904074192047,
1181
+ "learning_rate": 2.4124187730720917e-05,
1182
+ "loss": 1.2429,
1183
+ "step": 154
1184
+ },
1185
+ {
1186
+ "epoch": 3.1020408163265305,
1187
+ "grad_norm": 0.17531636357307434,
1188
+ "learning_rate": 2.3034876209506772e-05,
1189
+ "loss": 1.2459,
1190
+ "step": 155
1191
+ },
1192
+ {
1193
+ "epoch": 3.122448979591837,
1194
+ "grad_norm": 0.17256909608840942,
1195
+ "learning_rate": 2.1967520904790827e-05,
1196
+ "loss": 1.2523,
1197
+ "step": 156
1198
+ },
1199
+ {
1200
+ "epoch": 3.122448979591837,
1201
+ "eval_loss": 1.240277886390686,
1202
+ "eval_runtime": 270.7279,
1203
+ "eval_samples_per_second": 6.261,
1204
+ "eval_steps_per_second": 3.132,
1205
+ "step": 156
1206
+ },
1207
+ {
1208
+ "epoch": 3.142857142857143,
1209
+ "grad_norm": 0.17711801826953888,
1210
+ "learning_rate": 2.092242630623016e-05,
1211
+ "loss": 1.2416,
1212
+ "step": 157
1213
+ },
1214
+ {
1215
+ "epoch": 3.163265306122449,
1216
+ "grad_norm": 0.1642543524503708,
1217
+ "learning_rate": 1.9899890553061562e-05,
1218
+ "loss": 1.2563,
1219
+ "step": 158
1220
+ },
1221
+ {
1222
+ "epoch": 3.183673469387755,
1223
+ "grad_norm": 0.17609795928001404,
1224
+ "learning_rate": 1.8900205349049904e-05,
1225
+ "loss": 1.2406,
1226
+ "step": 159
1227
+ },
1228
+ {
1229
+ "epoch": 3.204081632653061,
1230
+ "grad_norm": 0.18534283339977264,
1231
+ "learning_rate": 1.7923655879272393e-05,
1232
+ "loss": 1.2522,
1233
+ "step": 160
1234
+ },
1235
+ {
1236
+ "epoch": 3.2244897959183674,
1237
+ "grad_norm": 0.17926208674907684,
1238
+ "learning_rate": 1.6970520728762375e-05,
1239
+ "loss": 1.2315,
1240
+ "step": 161
1241
+ },
1242
+ {
1243
+ "epoch": 3.2448979591836733,
1244
+ "grad_norm": 0.18245543539524078,
1245
+ "learning_rate": 1.60410718030361e-05,
1246
+ "loss": 1.2493,
1247
+ "step": 162
1248
+ },
1249
+ {
1250
+ "epoch": 3.2653061224489797,
1251
+ "grad_norm": 0.16576482355594635,
1252
+ "learning_rate": 1.5135574250524897e-05,
1253
+ "loss": 1.2633,
1254
+ "step": 163
1255
+ },
1256
+ {
1257
+ "epoch": 3.2857142857142856,
1258
+ "grad_norm": 0.1768399477005005,
1259
+ "learning_rate": 1.425428638693489e-05,
1260
+ "loss": 1.2399,
1261
+ "step": 164
1262
+ },
1263
+ {
1264
+ "epoch": 3.306122448979592,
1265
+ "grad_norm": 0.17402540147304535,
1266
+ "learning_rate": 1.339745962155613e-05,
1267
+ "loss": 1.2574,
1268
+ "step": 165
1269
+ },
1270
+ {
1271
+ "epoch": 3.326530612244898,
1272
+ "grad_norm": 0.17550399899482727,
1273
+ "learning_rate": 1.2565338385541792e-05,
1274
+ "loss": 1.2429,
1275
+ "step": 166
1276
+ },
1277
+ {
1278
+ "epoch": 3.3469387755102042,
1279
+ "grad_norm": 0.18776686489582062,
1280
+ "learning_rate": 1.1758160062178093e-05,
1281
+ "loss": 1.2378,
1282
+ "step": 167
1283
+ },
1284
+ {
1285
+ "epoch": 3.36734693877551,
1286
+ "grad_norm": 0.1816324144601822,
1287
+ "learning_rate": 1.097615491916485e-05,
1288
+ "loss": 1.2503,
1289
+ "step": 168
1290
+ },
1291
+ {
1292
+ "epoch": 3.387755102040816,
1293
+ "grad_norm": 0.17802877724170685,
1294
+ "learning_rate": 1.0219546042925843e-05,
1295
+ "loss": 1.2468,
1296
+ "step": 169
1297
+ },
1298
+ {
1299
+ "epoch": 3.387755102040816,
1300
+ "eval_loss": 1.2385426759719849,
1301
+ "eval_runtime": 270.6389,
1302
+ "eval_samples_per_second": 6.263,
1303
+ "eval_steps_per_second": 3.133,
1304
+ "step": 169
1305
+ },
1306
+ {
1307
+ "epoch": 3.4081632653061225,
1308
+ "grad_norm": 0.1731177568435669,
1309
+ "learning_rate": 9.488549274967872e-06,
1310
+ "loss": 1.2431,
1311
+ "step": 170
1312
+ },
1313
+ {
1314
+ "epoch": 3.4285714285714284,
1315
+ "grad_norm": 0.16203820705413818,
1316
+ "learning_rate": 8.783373150306661e-06,
1317
+ "loss": 1.2394,
1318
+ "step": 171
1319
+ },
1320
+ {
1321
+ "epoch": 3.4489795918367347,
1322
+ "grad_norm": 0.1603914201259613,
1323
+ "learning_rate": 8.10421883797694e-06,
1324
+ "loss": 1.2317,
1325
+ "step": 172
1326
+ },
1327
+ {
1328
+ "epoch": 3.4693877551020407,
1329
+ "grad_norm": 0.16672447323799133,
1330
+ "learning_rate": 7.4512800836440525e-06,
1331
+ "loss": 1.2382,
1332
+ "step": 173
1333
+ },
1334
+ {
1335
+ "epoch": 3.489795918367347,
1336
+ "grad_norm": 0.16903318464756012,
1337
+ "learning_rate": 6.824743154333157e-06,
1338
+ "loss": 1.2406,
1339
+ "step": 174
1340
+ },
1341
+ {
1342
+ "epoch": 3.510204081632653,
1343
+ "grad_norm": 0.16718582808971405,
1344
+ "learning_rate": 6.22478678529197e-06,
1345
+ "loss": 1.2253,
1346
+ "step": 175
1347
+ },
1348
+ {
1349
+ "epoch": 3.5306122448979593,
1350
+ "grad_norm": 0.16773243248462677,
1351
+ "learning_rate": 5.651582129001986e-06,
1352
+ "loss": 1.2545,
1353
+ "step": 176
1354
+ },
1355
+ {
1356
+ "epoch": 3.5510204081632653,
1357
+ "grad_norm": 0.16658060252666473,
1358
+ "learning_rate": 5.105292706353093e-06,
1359
+ "loss": 1.2329,
1360
+ "step": 177
1361
+ },
1362
+ {
1363
+ "epoch": 3.571428571428571,
1364
+ "grad_norm": 0.16760899126529694,
1365
+ "learning_rate": 4.586074359995119e-06,
1366
+ "loss": 1.2218,
1367
+ "step": 178
1368
+ },
1369
+ {
1370
+ "epoch": 3.5918367346938775,
1371
+ "grad_norm": 0.17462213337421417,
1372
+ "learning_rate": 4.094075209879788e-06,
1373
+ "loss": 1.236,
1374
+ "step": 179
1375
+ },
1376
+ {
1377
+ "epoch": 3.612244897959184,
1378
+ "grad_norm": 0.16253593564033508,
1379
+ "learning_rate": 3.6294356110059157e-06,
1380
+ "loss": 1.2518,
1381
+ "step": 180
1382
+ },
1383
+ {
1384
+ "epoch": 3.63265306122449,
1385
+ "grad_norm": 0.16653120517730713,
1386
+ "learning_rate": 3.1922881133795825e-06,
1387
+ "loss": 1.2171,
1388
+ "step": 181
1389
+ },
1390
+ {
1391
+ "epoch": 3.6530612244897958,
1392
+ "grad_norm": 0.1757594645023346,
1393
+ "learning_rate": 2.7827574242009437e-06,
1394
+ "loss": 1.2476,
1395
+ "step": 182
1396
+ },
1397
+ {
1398
+ "epoch": 3.6530612244897958,
1399
+ "eval_loss": 1.237037181854248,
1400
+ "eval_runtime": 270.3815,
1401
+ "eval_samples_per_second": 6.269,
1402
+ "eval_steps_per_second": 3.136,
1403
+ "step": 182
1404
+ },
1405
+ {
1406
+ "epoch": 3.673469387755102,
1407
+ "grad_norm": 0.1665186882019043,
1408
+ "learning_rate": 2.4009603722884742e-06,
1409
+ "loss": 1.2497,
1410
+ "step": 183
1411
+ },
1412
+ {
1413
+ "epoch": 3.693877551020408,
1414
+ "grad_norm": 0.17469817399978638,
1415
+ "learning_rate": 2.0470058747505516e-06,
1416
+ "loss": 1.2426,
1417
+ "step": 184
1418
+ },
1419
+ {
1420
+ "epoch": 3.7142857142857144,
1421
+ "grad_norm": 0.17130160331726074,
1422
+ "learning_rate": 1.7209949059142083e-06,
1423
+ "loss": 1.2255,
1424
+ "step": 185
1425
+ },
1426
+ {
1427
+ "epoch": 3.7346938775510203,
1428
+ "grad_norm": 0.1677573323249817,
1429
+ "learning_rate": 1.4230204685196203e-06,
1430
+ "loss": 1.2643,
1431
+ "step": 186
1432
+ },
1433
+ {
1434
+ "epoch": 3.7551020408163263,
1435
+ "grad_norm": 0.16778886318206787,
1436
+ "learning_rate": 1.1531675671888619e-06,
1437
+ "loss": 1.234,
1438
+ "step": 187
1439
+ },
1440
+ {
1441
+ "epoch": 3.7755102040816326,
1442
+ "grad_norm": 0.16397559642791748,
1443
+ "learning_rate": 9.11513184176116e-07,
1444
+ "loss": 1.2509,
1445
+ "step": 188
1446
+ },
1447
+ {
1448
+ "epoch": 3.795918367346939,
1449
+ "grad_norm": 0.16539420187473297,
1450
+ "learning_rate": 6.981262574066394e-07,
1451
+ "loss": 1.2425,
1452
+ "step": 189
1453
+ },
1454
+ {
1455
+ "epoch": 3.816326530612245,
1456
+ "grad_norm": 0.18255014717578888,
1457
+ "learning_rate": 5.130676608104845e-07,
1458
+ "loss": 1.2628,
1459
+ "step": 190
1460
+ },
1461
+ {
1462
+ "epoch": 3.836734693877551,
1463
+ "grad_norm": 0.16024163365364075,
1464
+ "learning_rate": 3.56390186956701e-07,
1465
+ "loss": 1.2331,
1466
+ "step": 191
1467
+ },
1468
+ {
1469
+ "epoch": 3.857142857142857,
1470
+ "grad_norm": 0.17575234174728394,
1471
+ "learning_rate": 2.2813853199292746e-07,
1472
+ "loss": 1.2497,
1473
+ "step": 192
1474
+ },
1475
+ {
1476
+ "epoch": 3.877551020408163,
1477
+ "grad_norm": 0.1590609848499298,
1478
+ "learning_rate": 1.2834928289472416e-07,
1479
+ "loss": 1.2436,
1480
+ "step": 193
1481
+ },
1482
+ {
1483
+ "epoch": 3.8979591836734695,
1484
+ "grad_norm": 0.17772971093654633,
1485
+ "learning_rate": 5.705090702819993e-08,
1486
+ "loss": 1.2361,
1487
+ "step": 194
1488
+ },
1489
+ {
1490
+ "epoch": 3.9183673469387754,
1491
+ "grad_norm": 0.15970654785633087,
1492
+ "learning_rate": 1.426374402901942e-08,
1493
+ "loss": 1.2366,
1494
+ "step": 195
1495
+ },
1496
+ {
1497
+ "epoch": 3.9183673469387754,
1498
+ "eval_loss": 1.2375136613845825,
1499
+ "eval_runtime": 270.7418,
1500
+ "eval_samples_per_second": 6.261,
1501
+ "eval_steps_per_second": 3.132,
1502
+ "step": 195
1503
+ },
1504
+ {
1505
+ "epoch": 3.938775510204082,
1506
+ "grad_norm": 0.15187527239322662,
1507
+ "learning_rate": 0.0,
1508
+ "loss": 1.2409,
1509
+ "step": 196
1510
+ }
1511
+ ],
1512
+ "logging_steps": 1,
1513
+ "max_steps": 196,
1514
+ "num_input_tokens_seen": 0,
1515
+ "num_train_epochs": 4,
1516
+ "save_steps": 49,
1517
+ "total_flos": 4.083740321198899e+16,
1518
+ "train_batch_size": 2,
1519
+ "trial_name": null,
1520
+ "trial_params": null
1521
+ }
checkpoint-196/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cc4ff61a4799ac22d5c627a0169a20cc75619ae1b5871f2d114f95284d87a6
3
+ size 5816
checkpoint-49/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-49/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-49/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15a7afbbb6db02fdac7ffe868d42729e1c9515f835763d3b9551db4ae31e3529
3
+ size 100966336
checkpoint-49/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db4145fa287fcc2dc98bac341ab537efce6a4407796361cd24ac6b2176f6a70
3
+ size 50916644
checkpoint-49/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e595b32f221472ac195c50986dfcd13bac01a4909d487f497aaa38e078d0c2
3
+ size 14244
checkpoint-49/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e5af14094f757ccb041613325b6c93fe808050ec47f3a4ec285ab4a0e229950
3
+ size 1064
checkpoint-49/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-49/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-49/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
checkpoint-49/trainer_state.json ADDED
@@ -0,0 +1,396 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 13,
6
+ "global_step": 49,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02040816326530612,
13
+ "grad_norm": 0.7881951332092285,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.7509,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02040816326530612,
20
+ "eval_loss": 2.6902382373809814,
21
+ "eval_runtime": 269.5606,
22
+ "eval_samples_per_second": 6.288,
23
+ "eval_steps_per_second": 3.146,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.04081632653061224,
28
+ "grad_norm": 0.789082407951355,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.7449,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.061224489795918366,
35
+ "grad_norm": 0.7354114055633545,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.7164,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.08163265306122448,
42
+ "grad_norm": 0.7292255759239197,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.7174,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.10204081632653061,
49
+ "grad_norm": 0.6898028254508972,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.6891,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.12244897959183673,
56
+ "grad_norm": 0.6861400604248047,
57
+ "learning_rate": 0.00012,
58
+ "loss": 2.6545,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.14285714285714285,
63
+ "grad_norm": 0.7510350346565247,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.5656,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.16326530612244897,
70
+ "grad_norm": 0.8011165261268616,
71
+ "learning_rate": 0.00016,
72
+ "loss": 2.4519,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1836734693877551,
77
+ "grad_norm": 0.8624005317687988,
78
+ "learning_rate": 0.00018,
79
+ "loss": 2.3178,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.20408163265306123,
84
+ "grad_norm": 0.8004987835884094,
85
+ "learning_rate": 0.0002,
86
+ "loss": 2.1783,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.22448979591836735,
91
+ "grad_norm": 0.6362400054931641,
92
+ "learning_rate": 0.000199985736255971,
93
+ "loss": 2.0252,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.24489795918367346,
98
+ "grad_norm": 0.7930936217308044,
99
+ "learning_rate": 0.0001999429490929718,
100
+ "loss": 1.8839,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2653061224489796,
105
+ "grad_norm": 0.5149843096733093,
106
+ "learning_rate": 0.00019987165071710527,
107
+ "loss": 1.8064,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2653061224489796,
112
+ "eval_loss": 1.6734941005706787,
113
+ "eval_runtime": 271.2615,
114
+ "eval_samples_per_second": 6.249,
115
+ "eval_steps_per_second": 3.126,
116
+ "step": 13
117
+ },
118
+ {
119
+ "epoch": 0.2857142857142857,
120
+ "grad_norm": 0.42121434211730957,
121
+ "learning_rate": 0.00019977186146800707,
122
+ "loss": 1.7922,
123
+ "step": 14
124
+ },
125
+ {
126
+ "epoch": 0.30612244897959184,
127
+ "grad_norm": 0.3523242771625519,
128
+ "learning_rate": 0.0001996436098130433,
129
+ "loss": 1.7711,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 0.32653061224489793,
134
+ "grad_norm": 0.3384595215320587,
135
+ "learning_rate": 0.00019948693233918952,
136
+ "loss": 1.7152,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.3469387755102041,
141
+ "grad_norm": 0.34942421317100525,
142
+ "learning_rate": 0.00019930187374259337,
143
+ "loss": 1.7112,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.3673469387755102,
148
+ "grad_norm": 0.31712639331817627,
149
+ "learning_rate": 0.00019908848681582391,
150
+ "loss": 1.7059,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.3877551020408163,
155
+ "grad_norm": 0.2875436842441559,
156
+ "learning_rate": 0.00019884683243281116,
157
+ "loss": 1.6468,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.40816326530612246,
162
+ "grad_norm": 0.24433130025863647,
163
+ "learning_rate": 0.00019857697953148037,
164
+ "loss": 1.6408,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.42857142857142855,
169
+ "grad_norm": 0.21414674818515778,
170
+ "learning_rate": 0.00019827900509408581,
171
+ "loss": 1.616,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.4489795918367347,
176
+ "grad_norm": 0.21537622809410095,
177
+ "learning_rate": 0.00019795299412524945,
178
+ "loss": 1.609,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.46938775510204084,
183
+ "grad_norm": 0.2432074397802353,
184
+ "learning_rate": 0.00019759903962771156,
185
+ "loss": 1.6066,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.4897959183673469,
190
+ "grad_norm": 0.2359839379787445,
191
+ "learning_rate": 0.00019721724257579907,
192
+ "loss": 1.5851,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.5102040816326531,
197
+ "grad_norm": 0.22065888345241547,
198
+ "learning_rate": 0.00019680771188662044,
199
+ "loss": 1.5739,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.5306122448979592,
204
+ "grad_norm": 0.20339132845401764,
205
+ "learning_rate": 0.0001963705643889941,
206
+ "loss": 1.5513,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.5306122448979592,
211
+ "eval_loss": 1.4832030534744263,
212
+ "eval_runtime": 271.2449,
213
+ "eval_samples_per_second": 6.249,
214
+ "eval_steps_per_second": 3.126,
215
+ "step": 26
216
+ },
217
+ {
218
+ "epoch": 0.5510204081632653,
219
+ "grad_norm": 0.18875224888324738,
220
+ "learning_rate": 0.00019590592479012023,
221
+ "loss": 1.5378,
222
+ "step": 27
223
+ },
224
+ {
225
+ "epoch": 0.5714285714285714,
226
+ "grad_norm": 0.18564417958259583,
227
+ "learning_rate": 0.00019541392564000488,
228
+ "loss": 1.5212,
229
+ "step": 28
230
+ },
231
+ {
232
+ "epoch": 0.5918367346938775,
233
+ "grad_norm": 0.16226942837238312,
234
+ "learning_rate": 0.00019489470729364692,
235
+ "loss": 1.5391,
236
+ "step": 29
237
+ },
238
+ {
239
+ "epoch": 0.6122448979591837,
240
+ "grad_norm": 0.15650039911270142,
241
+ "learning_rate": 0.00019434841787099803,
242
+ "loss": 1.511,
243
+ "step": 30
244
+ },
245
+ {
246
+ "epoch": 0.6326530612244898,
247
+ "grad_norm": 0.15976540744304657,
248
+ "learning_rate": 0.00019377521321470805,
249
+ "loss": 1.5119,
250
+ "step": 31
251
+ },
252
+ {
253
+ "epoch": 0.6530612244897959,
254
+ "grad_norm": 0.16409288346767426,
255
+ "learning_rate": 0.00019317525684566685,
256
+ "loss": 1.4909,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.673469387755102,
261
+ "grad_norm": 0.15468019247055054,
262
+ "learning_rate": 0.00019254871991635598,
263
+ "loss": 1.4951,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.6938775510204082,
268
+ "grad_norm": 0.1462036371231079,
269
+ "learning_rate": 0.00019189578116202307,
270
+ "loss": 1.4643,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.7142857142857143,
275
+ "grad_norm": 0.1541963368654251,
276
+ "learning_rate": 0.00019121662684969335,
277
+ "loss": 1.5159,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.7346938775510204,
282
+ "grad_norm": 0.14798064529895782,
283
+ "learning_rate": 0.00019051145072503215,
284
+ "loss": 1.4741,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.7551020408163265,
289
+ "grad_norm": 0.13914817571640015,
290
+ "learning_rate": 0.00018978045395707418,
291
+ "loss": 1.4788,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.7755102040816326,
296
+ "grad_norm": 0.15608824789524078,
297
+ "learning_rate": 0.00018902384508083517,
298
+ "loss": 1.4687,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.7959183673469388,
303
+ "grad_norm": 0.14460116624832153,
304
+ "learning_rate": 0.00018824183993782192,
305
+ "loss": 1.482,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.7959183673469388,
310
+ "eval_loss": 1.411073088645935,
311
+ "eval_runtime": 271.292,
312
+ "eval_samples_per_second": 6.248,
313
+ "eval_steps_per_second": 3.126,
314
+ "step": 39
315
+ },
316
+ {
317
+ "epoch": 0.8163265306122449,
318
+ "grad_norm": 0.15740551054477692,
319
+ "learning_rate": 0.00018743466161445823,
320
+ "loss": 1.4486,
321
+ "step": 40
322
+ },
323
+ {
324
+ "epoch": 0.8367346938775511,
325
+ "grad_norm": 0.14149661362171173,
326
+ "learning_rate": 0.00018660254037844388,
327
+ "loss": 1.4353,
328
+ "step": 41
329
+ },
330
+ {
331
+ "epoch": 0.8571428571428571,
332
+ "grad_norm": 0.14034292101860046,
333
+ "learning_rate": 0.0001857457136130651,
334
+ "loss": 1.4523,
335
+ "step": 42
336
+ },
337
+ {
338
+ "epoch": 0.8775510204081632,
339
+ "grad_norm": 0.1487722396850586,
340
+ "learning_rate": 0.00018486442574947511,
341
+ "loss": 1.4095,
342
+ "step": 43
343
+ },
344
+ {
345
+ "epoch": 0.8979591836734694,
346
+ "grad_norm": 0.17400234937667847,
347
+ "learning_rate": 0.00018395892819696389,
348
+ "loss": 1.4414,
349
+ "step": 44
350
+ },
351
+ {
352
+ "epoch": 0.9183673469387755,
353
+ "grad_norm": 0.1741325408220291,
354
+ "learning_rate": 0.00018302947927123766,
355
+ "loss": 1.4379,
356
+ "step": 45
357
+ },
358
+ {
359
+ "epoch": 0.9387755102040817,
360
+ "grad_norm": 0.15319454669952393,
361
+ "learning_rate": 0.00018207634412072764,
362
+ "loss": 1.405,
363
+ "step": 46
364
+ },
365
+ {
366
+ "epoch": 0.9591836734693877,
367
+ "grad_norm": 0.15876264870166779,
368
+ "learning_rate": 0.00018109979465095013,
369
+ "loss": 1.4122,
370
+ "step": 47
371
+ },
372
+ {
373
+ "epoch": 0.9795918367346939,
374
+ "grad_norm": 0.17120805382728577,
375
+ "learning_rate": 0.00018010010944693848,
376
+ "loss": 1.4132,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 1.0,
381
+ "grad_norm": 0.1436116099357605,
382
+ "learning_rate": 0.00017907757369376985,
383
+ "loss": 1.416,
384
+ "step": 49
385
+ }
386
+ ],
387
+ "logging_steps": 1,
388
+ "max_steps": 196,
389
+ "num_input_tokens_seen": 0,
390
+ "num_train_epochs": 4,
391
+ "save_steps": 49,
392
+ "total_flos": 1.0209350802997248e+16,
393
+ "train_batch_size": 2,
394
+ "trial_name": null,
395
+ "trial_params": null
396
+ }
checkpoint-49/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cc4ff61a4799ac22d5c627a0169a20cc75619ae1b5871f2d114f95284d87a6
3
+ size 5816
checkpoint-98/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-98/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "up_proj",
24
+ "o_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "q_proj",
28
+ "gate_proj",
29
+ "v_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-98/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f74a76e06a6e5698ca16a682f4fa5d7e5c10182d165fe6c9327116444b10d0
3
+ size 100966336
checkpoint-98/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c01f653a0ce9ea304a86d075b21cd51ea729659b91629c555eec65181dd1818
3
+ size 50916644
checkpoint-98/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff339d3bf5bb702320fd9a759e0988b159a701364f186575c95d51b72519d7a1
3
+ size 14244
checkpoint-98/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e31465eabc96d2c0b0dc68386782c8ea3a5771edcba13d0d620c4297cd31957
3
+ size 1064
checkpoint-98/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-98/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
checkpoint-98/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": false,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "tokenizer_class": "LlamaTokenizer",
42
+ "unk_token": "<unk>",
43
+ "use_default_system_prompt": false,
44
+ "use_fast": true
45
+ }
checkpoint-98/trainer_state.json ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.9795918367346939,
5
+ "eval_steps": 13,
6
+ "global_step": 98,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02040816326530612,
13
+ "grad_norm": 0.7881951332092285,
14
+ "learning_rate": 2e-05,
15
+ "loss": 2.7509,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.02040816326530612,
20
+ "eval_loss": 2.6902382373809814,
21
+ "eval_runtime": 269.5606,
22
+ "eval_samples_per_second": 6.288,
23
+ "eval_steps_per_second": 3.146,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.04081632653061224,
28
+ "grad_norm": 0.789082407951355,
29
+ "learning_rate": 4e-05,
30
+ "loss": 2.7449,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.061224489795918366,
35
+ "grad_norm": 0.7354114055633545,
36
+ "learning_rate": 6e-05,
37
+ "loss": 2.7164,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.08163265306122448,
42
+ "grad_norm": 0.7292255759239197,
43
+ "learning_rate": 8e-05,
44
+ "loss": 2.7174,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.10204081632653061,
49
+ "grad_norm": 0.6898028254508972,
50
+ "learning_rate": 0.0001,
51
+ "loss": 2.6891,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.12244897959183673,
56
+ "grad_norm": 0.6861400604248047,
57
+ "learning_rate": 0.00012,
58
+ "loss": 2.6545,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.14285714285714285,
63
+ "grad_norm": 0.7510350346565247,
64
+ "learning_rate": 0.00014,
65
+ "loss": 2.5656,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.16326530612244897,
70
+ "grad_norm": 0.8011165261268616,
71
+ "learning_rate": 0.00016,
72
+ "loss": 2.4519,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.1836734693877551,
77
+ "grad_norm": 0.8624005317687988,
78
+ "learning_rate": 0.00018,
79
+ "loss": 2.3178,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.20408163265306123,
84
+ "grad_norm": 0.8004987835884094,
85
+ "learning_rate": 0.0002,
86
+ "loss": 2.1783,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.22448979591836735,
91
+ "grad_norm": 0.6362400054931641,
92
+ "learning_rate": 0.000199985736255971,
93
+ "loss": 2.0252,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.24489795918367346,
98
+ "grad_norm": 0.7930936217308044,
99
+ "learning_rate": 0.0001999429490929718,
100
+ "loss": 1.8839,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.2653061224489796,
105
+ "grad_norm": 0.5149843096733093,
106
+ "learning_rate": 0.00019987165071710527,
107
+ "loss": 1.8064,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.2653061224489796,
112
+ "eval_loss": 1.6734941005706787,
113
+ "eval_runtime": 271.2615,
114
+ "eval_samples_per_second": 6.249,
115
+ "eval_steps_per_second": 3.126,
116
+ "step": 13
117
+ },
118
+ {
119
+ "epoch": 0.2857142857142857,
120
+ "grad_norm": 0.42121434211730957,
121
+ "learning_rate": 0.00019977186146800707,
122
+ "loss": 1.7922,
123
+ "step": 14
124
+ },
125
+ {
126
+ "epoch": 0.30612244897959184,
127
+ "grad_norm": 0.3523242771625519,
128
+ "learning_rate": 0.0001996436098130433,
129
+ "loss": 1.7711,
130
+ "step": 15
131
+ },
132
+ {
133
+ "epoch": 0.32653061224489793,
134
+ "grad_norm": 0.3384595215320587,
135
+ "learning_rate": 0.00019948693233918952,
136
+ "loss": 1.7152,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.3469387755102041,
141
+ "grad_norm": 0.34942421317100525,
142
+ "learning_rate": 0.00019930187374259337,
143
+ "loss": 1.7112,
144
+ "step": 17
145
+ },
146
+ {
147
+ "epoch": 0.3673469387755102,
148
+ "grad_norm": 0.31712639331817627,
149
+ "learning_rate": 0.00019908848681582391,
150
+ "loss": 1.7059,
151
+ "step": 18
152
+ },
153
+ {
154
+ "epoch": 0.3877551020408163,
155
+ "grad_norm": 0.2875436842441559,
156
+ "learning_rate": 0.00019884683243281116,
157
+ "loss": 1.6468,
158
+ "step": 19
159
+ },
160
+ {
161
+ "epoch": 0.40816326530612246,
162
+ "grad_norm": 0.24433130025863647,
163
+ "learning_rate": 0.00019857697953148037,
164
+ "loss": 1.6408,
165
+ "step": 20
166
+ },
167
+ {
168
+ "epoch": 0.42857142857142855,
169
+ "grad_norm": 0.21414674818515778,
170
+ "learning_rate": 0.00019827900509408581,
171
+ "loss": 1.616,
172
+ "step": 21
173
+ },
174
+ {
175
+ "epoch": 0.4489795918367347,
176
+ "grad_norm": 0.21537622809410095,
177
+ "learning_rate": 0.00019795299412524945,
178
+ "loss": 1.609,
179
+ "step": 22
180
+ },
181
+ {
182
+ "epoch": 0.46938775510204084,
183
+ "grad_norm": 0.2432074397802353,
184
+ "learning_rate": 0.00019759903962771156,
185
+ "loss": 1.6066,
186
+ "step": 23
187
+ },
188
+ {
189
+ "epoch": 0.4897959183673469,
190
+ "grad_norm": 0.2359839379787445,
191
+ "learning_rate": 0.00019721724257579907,
192
+ "loss": 1.5851,
193
+ "step": 24
194
+ },
195
+ {
196
+ "epoch": 0.5102040816326531,
197
+ "grad_norm": 0.22065888345241547,
198
+ "learning_rate": 0.00019680771188662044,
199
+ "loss": 1.5739,
200
+ "step": 25
201
+ },
202
+ {
203
+ "epoch": 0.5306122448979592,
204
+ "grad_norm": 0.20339132845401764,
205
+ "learning_rate": 0.0001963705643889941,
206
+ "loss": 1.5513,
207
+ "step": 26
208
+ },
209
+ {
210
+ "epoch": 0.5306122448979592,
211
+ "eval_loss": 1.4832030534744263,
212
+ "eval_runtime": 271.2449,
213
+ "eval_samples_per_second": 6.249,
214
+ "eval_steps_per_second": 3.126,
215
+ "step": 26
216
+ },
217
+ {
218
+ "epoch": 0.5510204081632653,
219
+ "grad_norm": 0.18875224888324738,
220
+ "learning_rate": 0.00019590592479012023,
221
+ "loss": 1.5378,
222
+ "step": 27
223
+ },
224
+ {
225
+ "epoch": 0.5714285714285714,
226
+ "grad_norm": 0.18564417958259583,
227
+ "learning_rate": 0.00019541392564000488,
228
+ "loss": 1.5212,
229
+ "step": 28
230
+ },
231
+ {
232
+ "epoch": 0.5918367346938775,
233
+ "grad_norm": 0.16226942837238312,
234
+ "learning_rate": 0.00019489470729364692,
235
+ "loss": 1.5391,
236
+ "step": 29
237
+ },
238
+ {
239
+ "epoch": 0.6122448979591837,
240
+ "grad_norm": 0.15650039911270142,
241
+ "learning_rate": 0.00019434841787099803,
242
+ "loss": 1.511,
243
+ "step": 30
244
+ },
245
+ {
246
+ "epoch": 0.6326530612244898,
247
+ "grad_norm": 0.15976540744304657,
248
+ "learning_rate": 0.00019377521321470805,
249
+ "loss": 1.5119,
250
+ "step": 31
251
+ },
252
+ {
253
+ "epoch": 0.6530612244897959,
254
+ "grad_norm": 0.16409288346767426,
255
+ "learning_rate": 0.00019317525684566685,
256
+ "loss": 1.4909,
257
+ "step": 32
258
+ },
259
+ {
260
+ "epoch": 0.673469387755102,
261
+ "grad_norm": 0.15468019247055054,
262
+ "learning_rate": 0.00019254871991635598,
263
+ "loss": 1.4951,
264
+ "step": 33
265
+ },
266
+ {
267
+ "epoch": 0.6938775510204082,
268
+ "grad_norm": 0.1462036371231079,
269
+ "learning_rate": 0.00019189578116202307,
270
+ "loss": 1.4643,
271
+ "step": 34
272
+ },
273
+ {
274
+ "epoch": 0.7142857142857143,
275
+ "grad_norm": 0.1541963368654251,
276
+ "learning_rate": 0.00019121662684969335,
277
+ "loss": 1.5159,
278
+ "step": 35
279
+ },
280
+ {
281
+ "epoch": 0.7346938775510204,
282
+ "grad_norm": 0.14798064529895782,
283
+ "learning_rate": 0.00019051145072503215,
284
+ "loss": 1.4741,
285
+ "step": 36
286
+ },
287
+ {
288
+ "epoch": 0.7551020408163265,
289
+ "grad_norm": 0.13914817571640015,
290
+ "learning_rate": 0.00018978045395707418,
291
+ "loss": 1.4788,
292
+ "step": 37
293
+ },
294
+ {
295
+ "epoch": 0.7755102040816326,
296
+ "grad_norm": 0.15608824789524078,
297
+ "learning_rate": 0.00018902384508083517,
298
+ "loss": 1.4687,
299
+ "step": 38
300
+ },
301
+ {
302
+ "epoch": 0.7959183673469388,
303
+ "grad_norm": 0.14460116624832153,
304
+ "learning_rate": 0.00018824183993782192,
305
+ "loss": 1.482,
306
+ "step": 39
307
+ },
308
+ {
309
+ "epoch": 0.7959183673469388,
310
+ "eval_loss": 1.411073088645935,
311
+ "eval_runtime": 271.292,
312
+ "eval_samples_per_second": 6.248,
313
+ "eval_steps_per_second": 3.126,
314
+ "step": 39
315
+ },
316
+ {
317
+ "epoch": 0.8163265306122449,
318
+ "grad_norm": 0.15740551054477692,
319
+ "learning_rate": 0.00018743466161445823,
320
+ "loss": 1.4486,
321
+ "step": 40
322
+ },
323
+ {
324
+ "epoch": 0.8367346938775511,
325
+ "grad_norm": 0.14149661362171173,
326
+ "learning_rate": 0.00018660254037844388,
327
+ "loss": 1.4353,
328
+ "step": 41
329
+ },
330
+ {
331
+ "epoch": 0.8571428571428571,
332
+ "grad_norm": 0.14034292101860046,
333
+ "learning_rate": 0.0001857457136130651,
334
+ "loss": 1.4523,
335
+ "step": 42
336
+ },
337
+ {
338
+ "epoch": 0.8775510204081632,
339
+ "grad_norm": 0.1487722396850586,
340
+ "learning_rate": 0.00018486442574947511,
341
+ "loss": 1.4095,
342
+ "step": 43
343
+ },
344
+ {
345
+ "epoch": 0.8979591836734694,
346
+ "grad_norm": 0.17400234937667847,
347
+ "learning_rate": 0.00018395892819696389,
348
+ "loss": 1.4414,
349
+ "step": 44
350
+ },
351
+ {
352
+ "epoch": 0.9183673469387755,
353
+ "grad_norm": 0.1741325408220291,
354
+ "learning_rate": 0.00018302947927123766,
355
+ "loss": 1.4379,
356
+ "step": 45
357
+ },
358
+ {
359
+ "epoch": 0.9387755102040817,
360
+ "grad_norm": 0.15319454669952393,
361
+ "learning_rate": 0.00018207634412072764,
362
+ "loss": 1.405,
363
+ "step": 46
364
+ },
365
+ {
366
+ "epoch": 0.9591836734693877,
367
+ "grad_norm": 0.15876264870166779,
368
+ "learning_rate": 0.00018109979465095013,
369
+ "loss": 1.4122,
370
+ "step": 47
371
+ },
372
+ {
373
+ "epoch": 0.9795918367346939,
374
+ "grad_norm": 0.17120805382728577,
375
+ "learning_rate": 0.00018010010944693848,
376
+ "loss": 1.4132,
377
+ "step": 48
378
+ },
379
+ {
380
+ "epoch": 1.0,
381
+ "grad_norm": 0.1436116099357605,
382
+ "learning_rate": 0.00017907757369376985,
383
+ "loss": 1.416,
384
+ "step": 49
385
+ },
386
+ {
387
+ "epoch": 1.0204081632653061,
388
+ "grad_norm": 0.1707429438829422,
389
+ "learning_rate": 0.0001780324790952092,
390
+ "loss": 1.3913,
391
+ "step": 50
392
+ },
393
+ {
394
+ "epoch": 1.0204081632653061,
395
+ "grad_norm": 0.17117524147033691,
396
+ "learning_rate": 0.00017696512379049325,
397
+ "loss": 1.3963,
398
+ "step": 51
399
+ },
400
+ {
401
+ "epoch": 1.0408163265306123,
402
+ "grad_norm": 0.13410089910030365,
403
+ "learning_rate": 0.0001758758122692791,
404
+ "loss": 1.392,
405
+ "step": 52
406
+ },
407
+ {
408
+ "epoch": 1.0408163265306123,
409
+ "eval_loss": 1.3676769733428955,
410
+ "eval_runtime": 270.8566,
411
+ "eval_samples_per_second": 6.258,
412
+ "eval_steps_per_second": 3.131,
413
+ "step": 52
414
+ },
415
+ {
416
+ "epoch": 1.0612244897959184,
417
+ "grad_norm": 0.18877607583999634,
418
+ "learning_rate": 0.00017476485528478093,
419
+ "loss": 1.3854,
420
+ "step": 53
421
+ },
422
+ {
423
+ "epoch": 1.0816326530612246,
424
+ "grad_norm": 0.1752927452325821,
425
+ "learning_rate": 0.00017363256976511972,
426
+ "loss": 1.3759,
427
+ "step": 54
428
+ },
429
+ {
430
+ "epoch": 1.1020408163265305,
431
+ "grad_norm": 0.17180170118808746,
432
+ "learning_rate": 0.000172479278722912,
433
+ "loss": 1.3614,
434
+ "step": 55
435
+ },
436
+ {
437
+ "epoch": 1.1224489795918366,
438
+ "grad_norm": 0.1640290915966034,
439
+ "learning_rate": 0.00017130531116312203,
440
+ "loss": 1.3853,
441
+ "step": 56
442
+ },
443
+ {
444
+ "epoch": 1.1428571428571428,
445
+ "grad_norm": 0.2047068476676941,
446
+ "learning_rate": 0.0001701110019892053,
447
+ "loss": 1.3699,
448
+ "step": 57
449
+ },
450
+ {
451
+ "epoch": 1.163265306122449,
452
+ "grad_norm": 0.1835869997739792,
453
+ "learning_rate": 0.00016889669190756868,
454
+ "loss": 1.3403,
455
+ "step": 58
456
+ },
457
+ {
458
+ "epoch": 1.183673469387755,
459
+ "grad_norm": 0.16733241081237793,
460
+ "learning_rate": 0.00016766272733037576,
461
+ "loss": 1.3609,
462
+ "step": 59
463
+ },
464
+ {
465
+ "epoch": 1.2040816326530612,
466
+ "grad_norm": 0.178726926445961,
467
+ "learning_rate": 0.00016640946027672392,
468
+ "loss": 1.3651,
469
+ "step": 60
470
+ },
471
+ {
472
+ "epoch": 1.2244897959183674,
473
+ "grad_norm": 0.16719630360603333,
474
+ "learning_rate": 0.00016513724827222227,
475
+ "loss": 1.3676,
476
+ "step": 61
477
+ },
478
+ {
479
+ "epoch": 1.2448979591836735,
480
+ "grad_norm": 0.15999363362789154,
481
+ "learning_rate": 0.00016384645424699835,
482
+ "loss": 1.3651,
483
+ "step": 62
484
+ },
485
+ {
486
+ "epoch": 1.2653061224489797,
487
+ "grad_norm": 0.1705988198518753,
488
+ "learning_rate": 0.00016253744643216368,
489
+ "loss": 1.3757,
490
+ "step": 63
491
+ },
492
+ {
493
+ "epoch": 1.2857142857142856,
494
+ "grad_norm": 0.14996370673179626,
495
+ "learning_rate": 0.0001612105982547663,
496
+ "loss": 1.3474,
497
+ "step": 64
498
+ },
499
+ {
500
+ "epoch": 1.306122448979592,
501
+ "grad_norm": 0.19127260148525238,
502
+ "learning_rate": 0.0001598662882312615,
503
+ "loss": 1.3414,
504
+ "step": 65
505
+ },
506
+ {
507
+ "epoch": 1.306122448979592,
508
+ "eval_loss": 1.331880807876587,
509
+ "eval_runtime": 270.8424,
510
+ "eval_samples_per_second": 6.258,
511
+ "eval_steps_per_second": 3.131,
512
+ "step": 65
513
+ },
514
+ {
515
+ "epoch": 1.3265306122448979,
516
+ "grad_norm": 0.16125527024269104,
517
+ "learning_rate": 0.00015850489985953076,
518
+ "loss": 1.3509,
519
+ "step": 66
520
+ },
521
+ {
522
+ "epoch": 1.346938775510204,
523
+ "grad_norm": 0.1979473978281021,
524
+ "learning_rate": 0.00015712682150947923,
525
+ "loss": 1.3579,
526
+ "step": 67
527
+ },
528
+ {
529
+ "epoch": 1.3673469387755102,
530
+ "grad_norm": 0.18317992985248566,
531
+ "learning_rate": 0.00015573244631224365,
532
+ "loss": 1.3341,
533
+ "step": 68
534
+ },
535
+ {
536
+ "epoch": 1.3877551020408163,
537
+ "grad_norm": 0.1646898239850998,
538
+ "learning_rate": 0.0001543221720480419,
539
+ "loss": 1.3361,
540
+ "step": 69
541
+ },
542
+ {
543
+ "epoch": 1.4081632653061225,
544
+ "grad_norm": 0.1760271042585373,
545
+ "learning_rate": 0.00015289640103269625,
546
+ "loss": 1.358,
547
+ "step": 70
548
+ },
549
+ {
550
+ "epoch": 1.4285714285714286,
551
+ "grad_norm": 0.165283203125,
552
+ "learning_rate": 0.0001514555400028629,
553
+ "loss": 1.3072,
554
+ "step": 71
555
+ },
556
+ {
557
+ "epoch": 1.4489795918367347,
558
+ "grad_norm": 0.1507076472043991,
559
+ "learning_rate": 0.00015000000000000001,
560
+ "loss": 1.3133,
561
+ "step": 72
562
+ },
563
+ {
564
+ "epoch": 1.469387755102041,
565
+ "grad_norm": 0.16913647949695587,
566
+ "learning_rate": 0.00014853019625310813,
567
+ "loss": 1.3232,
568
+ "step": 73
569
+ },
570
+ {
571
+ "epoch": 1.489795918367347,
572
+ "grad_norm": 0.18266479671001434,
573
+ "learning_rate": 0.0001470465480602756,
574
+ "loss": 1.3512,
575
+ "step": 74
576
+ },
577
+ {
578
+ "epoch": 1.510204081632653,
579
+ "grad_norm": 0.19301828742027283,
580
+ "learning_rate": 0.0001455494786690634,
581
+ "loss": 1.3241,
582
+ "step": 75
583
+ },
584
+ {
585
+ "epoch": 1.5306122448979593,
586
+ "grad_norm": 0.16109652817249298,
587
+ "learning_rate": 0.00014403941515576344,
588
+ "loss": 1.3256,
589
+ "step": 76
590
+ },
591
+ {
592
+ "epoch": 1.5510204081632653,
593
+ "grad_norm": 0.17053867876529694,
594
+ "learning_rate": 0.00014251678830356408,
595
+ "loss": 1.3162,
596
+ "step": 77
597
+ },
598
+ {
599
+ "epoch": 1.5714285714285714,
600
+ "grad_norm": 0.17348544299602509,
601
+ "learning_rate": 0.00014098203247965875,
602
+ "loss": 1.3213,
603
+ "step": 78
604
+ },
605
+ {
606
+ "epoch": 1.5714285714285714,
607
+ "eval_loss": 1.3028697967529297,
608
+ "eval_runtime": 270.8095,
609
+ "eval_samples_per_second": 6.259,
610
+ "eval_steps_per_second": 3.131,
611
+ "step": 78
612
+ },
613
+ {
614
+ "epoch": 1.5918367346938775,
615
+ "grad_norm": 0.1703907549381256,
616
+ "learning_rate": 0.00013943558551133186,
617
+ "loss": 1.3073,
618
+ "step": 79
619
+ },
620
+ {
621
+ "epoch": 1.6122448979591837,
622
+ "grad_norm": 0.17313100397586823,
623
+ "learning_rate": 0.0001378778885610576,
624
+ "loss": 1.3232,
625
+ "step": 80
626
+ },
627
+ {
628
+ "epoch": 1.6326530612244898,
629
+ "grad_norm": 0.17237025499343872,
630
+ "learning_rate": 0.00013630938600064747,
631
+ "loss": 1.3406,
632
+ "step": 81
633
+ },
634
+ {
635
+ "epoch": 1.6530612244897958,
636
+ "grad_norm": 0.19658459722995758,
637
+ "learning_rate": 0.00013473052528448201,
638
+ "loss": 1.3114,
639
+ "step": 82
640
+ },
641
+ {
642
+ "epoch": 1.6734693877551021,
643
+ "grad_norm": 0.20599938929080963,
644
+ "learning_rate": 0.0001331417568218636,
645
+ "loss": 1.3288,
646
+ "step": 83
647
+ },
648
+ {
649
+ "epoch": 1.693877551020408,
650
+ "grad_norm": 0.17759399116039276,
651
+ "learning_rate": 0.00013154353384852558,
652
+ "loss": 1.2995,
653
+ "step": 84
654
+ },
655
+ {
656
+ "epoch": 1.7142857142857144,
657
+ "grad_norm": 0.18712250888347626,
658
+ "learning_rate": 0.00012993631229733582,
659
+ "loss": 1.2895,
660
+ "step": 85
661
+ },
662
+ {
663
+ "epoch": 1.7346938775510203,
664
+ "grad_norm": 0.1991330236196518,
665
+ "learning_rate": 0.00012832055066823038,
666
+ "loss": 1.2886,
667
+ "step": 86
668
+ },
669
+ {
670
+ "epoch": 1.7551020408163265,
671
+ "grad_norm": 0.22125203907489777,
672
+ "learning_rate": 0.00012669670989741517,
673
+ "loss": 1.3233,
674
+ "step": 87
675
+ },
676
+ {
677
+ "epoch": 1.7755102040816326,
678
+ "grad_norm": 0.2052813619375229,
679
+ "learning_rate": 0.00012506525322587207,
680
+ "loss": 1.3079,
681
+ "step": 88
682
+ },
683
+ {
684
+ "epoch": 1.7959183673469388,
685
+ "grad_norm": 0.19290736317634583,
686
+ "learning_rate": 0.00012342664606720822,
687
+ "loss": 1.3174,
688
+ "step": 89
689
+ },
690
+ {
691
+ "epoch": 1.816326530612245,
692
+ "grad_norm": 0.20912542939186096,
693
+ "learning_rate": 0.00012178135587488515,
694
+ "loss": 1.2915,
695
+ "step": 90
696
+ },
697
+ {
698
+ "epoch": 1.836734693877551,
699
+ "grad_norm": 0.20760588347911835,
700
+ "learning_rate": 0.00012012985200886602,
701
+ "loss": 1.3028,
702
+ "step": 91
703
+ },
704
+ {
705
+ "epoch": 1.836734693877551,
706
+ "eval_loss": 1.2795333862304688,
707
+ "eval_runtime": 270.6525,
708
+ "eval_samples_per_second": 6.263,
709
+ "eval_steps_per_second": 3.133,
710
+ "step": 91
711
+ },
712
+ {
713
+ "epoch": 1.8571428571428572,
714
+ "grad_norm": 0.1996900886297226,
715
+ "learning_rate": 0.00011847260560171896,
716
+ "loss": 1.3119,
717
+ "step": 92
718
+ },
719
+ {
720
+ "epoch": 1.8775510204081631,
721
+ "grad_norm": 0.23766876757144928,
722
+ "learning_rate": 0.00011681008942421483,
723
+ "loss": 1.2978,
724
+ "step": 93
725
+ },
726
+ {
727
+ "epoch": 1.8979591836734695,
728
+ "grad_norm": 0.19782397150993347,
729
+ "learning_rate": 0.00011514277775045768,
730
+ "loss": 1.2955,
731
+ "step": 94
732
+ },
733
+ {
734
+ "epoch": 1.9183673469387754,
735
+ "grad_norm": 0.22519494593143463,
736
+ "learning_rate": 0.00011347114622258612,
737
+ "loss": 1.2957,
738
+ "step": 95
739
+ },
740
+ {
741
+ "epoch": 1.9387755102040818,
742
+ "grad_norm": 0.2590245306491852,
743
+ "learning_rate": 0.00011179567171508463,
744
+ "loss": 1.2809,
745
+ "step": 96
746
+ },
747
+ {
748
+ "epoch": 1.9591836734693877,
749
+ "grad_norm": 0.2235420197248459,
750
+ "learning_rate": 0.00011011683219874323,
751
+ "loss": 1.2784,
752
+ "step": 97
753
+ },
754
+ {
755
+ "epoch": 1.9795918367346939,
756
+ "grad_norm": 0.285740464925766,
757
+ "learning_rate": 0.00010843510660430447,
758
+ "loss": 1.309,
759
+ "step": 98
760
+ }
761
+ ],
762
+ "logging_steps": 1,
763
+ "max_steps": 196,
764
+ "num_input_tokens_seen": 0,
765
+ "num_train_epochs": 4,
766
+ "save_steps": 49,
767
+ "total_flos": 2.0418701605994496e+16,
768
+ "train_batch_size": 2,
769
+ "trial_name": null,
770
+ "trial_params": null
771
+ }
checkpoint-98/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9cc4ff61a4799ac22d5c627a0169a20cc75619ae1b5871f2d114f95284d87a6
3
+ size 5816
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 2048,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 5632,
14
+ "max_position_embeddings": 4096,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 22,
18
+ "num_key_value_heads": 4,
19
+ "pretraining_tp": 1,
20
+ "quantization_config": {
21
+ "_load_in_4bit": false,
22
+ "_load_in_8bit": true,
23
+ "bnb_4bit_compute_dtype": "float32",
24
+ "bnb_4bit_quant_storage": "uint8",
25
+ "bnb_4bit_quant_type": "fp4",
26
+ "bnb_4bit_use_double_quant": false,
27
+ "llm_int8_enable_fp32_cpu_offload": false,
28
+ "llm_int8_has_fp16_weight": false,
29
+ "llm_int8_skip_modules": null,
30
+ "llm_int8_threshold": 6.0,
31
+ "load_in_4bit": false,
32
+ "load_in_8bit": true,
33
+ "quant_method": "bitsandbytes"
34
+ },
35
+ "rms_norm_eps": 1e-05,
36
+ "rope_scaling": null,
37
+ "rope_theta": 10000.0,
38
+ "tie_word_embeddings": false,
39
+ "torch_dtype": "float32",
40
+ "transformers_version": "4.40.2",
41
+ "use_cache": false,
42
+ "vocab_size": 32000
43
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723