Seymasa's picture
Update README.md
1e2cffe verified
|
raw
history blame
1.85 kB
metadata
language:
  - tr
tags:
  - translation
license: mit
datasets:
  - nanelimon/turkish-social-media-offensive-dataset

About the model

It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media. Included classes;

  • Nötr
  • Kızdırma/Hakaret
  • Cinsiyetçilik
  • Irkçılık

3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows;

Cinsiyetçilik Irkçılık Kızdırma Nötr
Precision 0.925 0.878 0.824 0.915
Recall 0.831 0.896 0.843 0.935
F1 Score 0.875 0.887 0.833 0.925
Accuracy : 0.886

Dependency

pip install torch torchvision torchaudio pip install tf-keras
pip install transformers
pip install tensorflow

Example

from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-bullying")
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-bullying", from_pt=True)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, top_k=2)

print(pipe('Bu bir denemedir hadi sende dene!'))

Result;

[[{'label': 'Nötr', 'score': 0.999175488948822}, {'label': 'Cinsiyetçi Zorbalık', 'score': 0.00042115405085496604}]]
  • label= It shows which class the sent Turkish text belongs to according to the model.
  • score= It shows the compliance rate of the Turkish text sent to the label found.

Authors

License

gpl-3.0

Free Software, Hell Yeah!