toumbert / README.md
nairaxo's picture
Create README.md
9ec8347
|
raw
history blame
1.14 kB
metadata
language:
  - multilingual
  - ny
  - kg
  - kmb
  - rw
  - ln
  - lua
  - lg
  - nso
  - rn
  - st
  - sw
  - ss
  - ts
  - tn
  - tum
  - umb
  - xh
  - zu
  - fr
  - en
license: apache-2.0

How to use

You can use this model directly with a pipeline for masked language modeling:

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='aioxlabs/toumbert')
>>> unmasker("rais wa [MASK] ya tanzania.")

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('aioxlabs/toumbert')
model = BertModel.from_pretrained("aioxlabs/toumbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('aioxlabs/toumbert')
model = TFBertModel.from_pretrained("aioxlabs/toumbert")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)