|
--- |
|
base_model: '' |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: hubert2BertMusicwithNewS10 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert2BertMusicwithNewS10 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.8649 |
|
- Rouge1: 24.5018 |
|
- Rouge2: 7.2557 |
|
- Rougel: 18.535 |
|
- Rougelsum: 18.4997 |
|
- Gen Len: 50.24 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 3.2422 | 1.0 | 1361 | 2.9931 | 25.0594 | 6.9031 | 18.6171 | 18.5836 | 48.72 | |
|
| 3.1189 | 2.0 | 2722 | 2.9560 | 24.0397 | 7.0297 | 18.3958 | 18.3901 | 48.51 | |
|
| 3.1167 | 3.0 | 4083 | 2.9341 | 24.2991 | 7.1132 | 18.4583 | 18.4489 | 46.43 | |
|
| 3.1044 | 4.0 | 5444 | 2.9114 | 24.6611 | 7.2594 | 18.633 | 18.6267 | 49.35 | |
|
| 3.1629 | 5.0 | 6805 | 2.8981 | 24.1154 | 7.3257 | 18.5844 | 18.5767 | 46.03 | |
|
| 3.1118 | 6.0 | 8166 | 2.8856 | 24.7206 | 7.2058 | 18.615 | 18.5836 | 51.1 | |
|
| 3.1004 | 7.0 | 9527 | 2.8762 | 24.3086 | 7.2822 | 18.5582 | 18.4717 | 48.02 | |
|
| 3.0851 | 8.0 | 10888 | 2.8702 | 24.3488 | 7.2356 | 18.4268 | 18.3977 | 49.38 | |
|
| 3.0963 | 9.0 | 12249 | 2.8663 | 24.4728 | 7.2887 | 18.4689 | 18.4485 | 50.51 | |
|
| 3.0999 | 10.0 | 13610 | 2.8649 | 24.5018 | 7.2557 | 18.535 | 18.4997 | 50.24 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.2 |
|
- Tokenizers 0.13.3 |
|
|