Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
A Moe model built on top of Qwen1.5-7B-Chat, Qwen1.5-7B and Crystalcareai/CrystalQwen-1.5-7B.
|
2 |
+
|
3 |
+
```
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
|
7 |
+
model_id = "mzbac/qwen-1.5-2x3-hf"
|
8 |
+
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_id,
|
11 |
+
torch_dtype=torch.bfloat16,
|
12 |
+
load_in_4bit=True,
|
13 |
+
trust_remote_code=True,
|
14 |
+
)
|
15 |
+
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
+
|
18 |
+
chat = [
|
19 |
+
{"role": "user", "content": "how backpropagation works?"},
|
20 |
+
{"role": "assistant", "content": "\n"},
|
21 |
+
]
|
22 |
+
|
23 |
+
text = tokenizer.apply_chat_template(chat, tokenize=False)
|
24 |
+
|
25 |
+
inputs = tokenizer.encode(text, return_tensors="pt").to("cuda")
|
26 |
+
|
27 |
+
generate_kwargs = dict(
|
28 |
+
input_ids=inputs,
|
29 |
+
temperature=0.6,
|
30 |
+
max_new_tokens=500,
|
31 |
+
do_sample=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
outputs = model.generate(**generate_kwargs)
|
35 |
+
print(tokenizer.decode(outputs[0]))
|
36 |
+
```
|