Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
The Moe model was constructed using 4 microsoft/phi-2. Then qlora was applied to all linear layers on WizardLM_evol_instruct_70k via mlx.
|
2 |
+
The model was created using a script from https://github.com/mzbac/mlx-moe
|
3 |
+
|
4 |
+
## Evaluation
|
5 |
+
|
6 |
+
### MMLU
|
7 |
+
|
8 |
+
**mzbac/phi-2-2x4-hf**
|
9 |
+
|
10 |
+
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|
11 |
+
|------------------|-------|------|-----:|------|-----:|---|-----:|
|
12 |
+
| - humanities |N/A |none | 0|acc |0.5970|± |0.0245|
|
13 |
+
| - other |N/A |none | 0|acc |0.5760|± |0.0311|
|
14 |
+
| - social_sciences|N/A |none | 0|acc |0.6610|± |0.0284|
|
15 |
+
| - stem |N/A |none | 0|acc |0.4738|± |0.0379|
|
16 |
+
|
17 |
+
**microsoft/phi-2**
|
18 |
+
|
19 |
+
| Groups |Version|Filter|n-shot|Metric|Value | |Stderr|
|
20 |
+
|------------------|-------|------|-----:|------|-----:|---|-----:|
|
21 |
+
| - humanities |N/A |none | 0|acc |0.6026|± |0.0243|
|
22 |
+
| - other |N/A |none | 0|acc |0.5827|± |0.0310|
|
23 |
+
| - social_sciences|N/A |none | 0|acc |0.6440|± |0.0289|
|
24 |
+
| - stem |N/A |none | 0|acc |0.4721|± |0.0377|
|
25 |
+
|
26 |
+
## Example
|
27 |
+
```
|
28 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
29 |
+
|
30 |
+
model_id = "mzbac/phi-2-2x4-hf"
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
32 |
+
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
|
34 |
+
|
35 |
+
text = "Instruct: how backpropagation works.\nOutput:"
|
36 |
+
inputs = tokenizer(text, return_tensors="pt")
|
37 |
+
|
38 |
+
outputs = model.generate(**inputs, max_new_tokens=20)
|
39 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
40 |
+
|
41 |
+
```
|