Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- mzbac/function-calling-phi-3-format-v1.1
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model
|
7 |
+
|
8 |
+
Fine-tuned the Phi3 instruction model for function calling via MLX-LM using https://huggingface.co/datasets/mzbac/function-calling-phi-3-format-v1.1
|
9 |
+
|
10 |
+
|
11 |
+
# Usage
|
12 |
+
```python
|
13 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
14 |
+
import torch
|
15 |
+
|
16 |
+
model_id = "mzbac/Phi-3-mini-4k-instruct-function-calling"
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
19 |
+
model = AutoModelForCausalLM.from_pretrained(
|
20 |
+
model_id,
|
21 |
+
torch_dtype=torch.bfloat16,
|
22 |
+
device_map="auto",
|
23 |
+
attn_implementation="flash_attention_2",
|
24 |
+
)
|
25 |
+
|
26 |
+
tool = {
|
27 |
+
"name": "search_web",
|
28 |
+
"description": "Perform a web search for a given search terms.",
|
29 |
+
"parameter": {
|
30 |
+
"type": "object",
|
31 |
+
"properties": {
|
32 |
+
"search_terms": {
|
33 |
+
"type": "array",
|
34 |
+
"items": {"type": "string"},
|
35 |
+
"description": "The search queries for which the search is performed.",
|
36 |
+
"required": True,
|
37 |
+
}
|
38 |
+
},
|
39 |
+
},
|
40 |
+
}
|
41 |
+
|
42 |
+
messages = [
|
43 |
+
{
|
44 |
+
"role": "user",
|
45 |
+
"content": f"You are a helpful assistant with access to the following functions. Use them if required - {str(tool)}",
|
46 |
+
},
|
47 |
+
{"role": "user", "content": "Any news in Melbourne today, May 7, 2024?"},
|
48 |
+
]
|
49 |
+
|
50 |
+
input_ids = tokenizer.apply_chat_template(
|
51 |
+
messages, add_generation_prompt=True, return_tensors="pt"
|
52 |
+
).to(model.device)
|
53 |
+
|
54 |
+
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")]
|
55 |
+
|
56 |
+
outputs = model.generate(
|
57 |
+
input_ids,
|
58 |
+
max_new_tokens=256,
|
59 |
+
eos_token_id=terminators,
|
60 |
+
do_sample=True,
|
61 |
+
temperature=0.1,
|
62 |
+
)
|
63 |
+
response = outputs[0]
|
64 |
+
print(tokenizer.decode(response))
|
65 |
+
|
66 |
+
# <s><|user|> You are a helpful assistant with access to the following functions. Use them if required - {'name': 'search_web', 'description': 'Perform a web search for a given search terms.', 'parameter': {'type': 'object', 'properties': {'search_terms': {'type': 'array', 'items': {'type': 'string'}, 'description': 'The search queries for which the search is performed.', 'required': True}}}}<|end|><|assistant|>
|
67 |
+
# <|user|> Any news in Melbourne today, May 7, 2024?<|end|>
|
68 |
+
# <|assistant|> <functioncall> {"name": "search_web", "arguments": {"search_terms": ["news", "Melbourne", "May 7, 2024"]}}<|end|>
|
69 |
+
```
|
70 |
+
|
71 |
+
# Training hyperparameters
|
72 |
+
lora_config.yaml
|
73 |
+
```yaml
|
74 |
+
# The path to the local model directory or Hugging Face repo.
|
75 |
+
model: "microsoft/Phi-3-mini-4k-instruct"
|
76 |
+
# Whether or not to train (boolean)
|
77 |
+
train: true
|
78 |
+
|
79 |
+
# Directory with {train, valid, test}.jsonl files
|
80 |
+
data: "data"
|
81 |
+
|
82 |
+
# The PRNG seed
|
83 |
+
seed: 0
|
84 |
+
|
85 |
+
# Number of layers to fine-tune
|
86 |
+
lora_layers: 32
|
87 |
+
|
88 |
+
# Minibatch size.
|
89 |
+
batch_size: 1
|
90 |
+
|
91 |
+
# Iterations to train for.
|
92 |
+
iters: 111000
|
93 |
+
|
94 |
+
# Number of validation batches, -1 uses the entire validation set.
|
95 |
+
val_batches: -1
|
96 |
+
|
97 |
+
# Adam learning rate.
|
98 |
+
learning_rate: 1e-6
|
99 |
+
|
100 |
+
# Number of training steps between loss reporting.
|
101 |
+
steps_per_report: 10
|
102 |
+
|
103 |
+
# Number of training steps between validations.
|
104 |
+
steps_per_eval: 200
|
105 |
+
|
106 |
+
# Load path to resume training with the given adapter weights.
|
107 |
+
# resume_adapter_file: "adapters/adapters.safetensors"
|
108 |
+
|
109 |
+
# Save/load path for the trained adapter weights.
|
110 |
+
adapter_path: "adapters"
|
111 |
+
|
112 |
+
# Save the model every N iterations.
|
113 |
+
save_every: 1000
|
114 |
+
|
115 |
+
# Evaluate on the test set after training
|
116 |
+
test: false
|
117 |
+
|
118 |
+
# Number of test set batches, -1 uses the entire test set.
|
119 |
+
test_batches: 100
|
120 |
+
|
121 |
+
# Maximum sequence length.
|
122 |
+
max_seq_length: 4096
|
123 |
+
|
124 |
+
# Use gradient checkpointing to reduce memory use.
|
125 |
+
grad_checkpoint: false
|
126 |
+
|
127 |
+
# LoRA parameters can only be specified in a config file
|
128 |
+
lora_parameters:
|
129 |
+
# The layer keys to apply LoRA to.
|
130 |
+
# These will be applied for the last lora_layers
|
131 |
+
keys: ['mlp.down_proj','mlp.gate_up_proj','self_attn.qkv_proj','self_attn.o_proj']
|
132 |
+
rank: 128
|
133 |
+
alpha: 256
|
134 |
+
scale: 10.0
|
135 |
+
dropout: 0.05
|
136 |
+
```
|