Upload generation_utils.py
Browse files- generation_utils.py +464 -0
generation_utils.py
ADDED
|
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
import warnings
|
| 17 |
+
import copy
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
import torch.distributions as dists
|
| 23 |
+
from torch.nn import functional as F
|
| 24 |
+
from transformers import __version__
|
| 25 |
+
from transformers.generation.configuration_utils import (
|
| 26 |
+
GenerationConfig
|
| 27 |
+
)
|
| 28 |
+
from transformers.utils import (
|
| 29 |
+
ModelOutput,
|
| 30 |
+
is_torchdynamo_compiling,
|
| 31 |
+
logging,
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
logger = logging.get_logger(__name__)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def top_p_logits(logits, top_p=None):
|
| 38 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
| 39 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
| 40 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 41 |
+
# Shift the indices to the right to keep the first token above the threshold
|
| 42 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 43 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 44 |
+
|
| 45 |
+
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
|
| 46 |
+
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
| 47 |
+
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
|
| 48 |
+
return logits
|
| 49 |
+
|
| 50 |
+
def top_k_logits(logits, top_k=None):
|
| 51 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
| 52 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
| 53 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
| 54 |
+
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
|
| 55 |
+
return logits
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
|
| 59 |
+
|
| 60 |
+
if temperature > 0:
|
| 61 |
+
logits = logits / temperature
|
| 62 |
+
if top_p is not None and top_p < 1:
|
| 63 |
+
logits = top_p_logits(logits, top_p)
|
| 64 |
+
if top_k is not None:
|
| 65 |
+
logits = top_k_logits(logits, top_k)
|
| 66 |
+
probs = torch.softmax(logits, dim=-1)
|
| 67 |
+
|
| 68 |
+
if temperature > 0:
|
| 69 |
+
try:
|
| 70 |
+
x0 = dists.Categorical(probs=probs).sample()
|
| 71 |
+
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
|
| 72 |
+
except:
|
| 73 |
+
confidence, x0 = probs.max(dim=-1)
|
| 74 |
+
else:
|
| 75 |
+
confidence, x0 = probs.max(dim=-1)
|
| 76 |
+
|
| 77 |
+
if margin_confidence:
|
| 78 |
+
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
|
| 79 |
+
# Extract top1 and top2 probabilities
|
| 80 |
+
top1_probs = sorted_probs[:, 0]
|
| 81 |
+
top2_probs = sorted_probs[:, 1]
|
| 82 |
+
# Calculate confidence as top1 - top2
|
| 83 |
+
confidence = top1_probs - top2_probs
|
| 84 |
+
|
| 85 |
+
if neg_entropy:
|
| 86 |
+
epsilon = 1e-10
|
| 87 |
+
log_probs = torch.log(probs + epsilon)
|
| 88 |
+
confidence = torch.sum(probs * log_probs, dim=-1)
|
| 89 |
+
|
| 90 |
+
return confidence, x0
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@dataclass
|
| 94 |
+
class DreamModelOutput(ModelOutput):
|
| 95 |
+
sequences: torch.LongTensor = None
|
| 96 |
+
history: Optional[Tuple[torch.FloatTensor]] = None
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
class DreamGenerationConfig(GenerationConfig):
|
| 100 |
+
def __init__(self, **kwargs):
|
| 101 |
+
self.temperature: float = kwargs.pop("temperature", 0.0)
|
| 102 |
+
self.top_p: Optional[float] = kwargs.pop("top_p", None)
|
| 103 |
+
self.top_k: Optional[int] = kwargs.pop("top_k", None)
|
| 104 |
+
self.max_length = kwargs.pop("max_length", 20)
|
| 105 |
+
self.max_new_tokens = kwargs.pop("max_new_tokens", None)
|
| 106 |
+
# diffusion specific params
|
| 107 |
+
self.eps: float = kwargs.pop("eps", 1e-3)
|
| 108 |
+
self.steps: int = kwargs.pop("steps", 512)
|
| 109 |
+
self.alg: str = kwargs.pop("alg", 'origin')
|
| 110 |
+
self.alg_temp: Optional[float] = kwargs.pop("alg_temp", None)
|
| 111 |
+
|
| 112 |
+
# Parameters that define the output variables of `generate`
|
| 113 |
+
self.num_return_sequences: int = kwargs.pop("num_return_sequences", 1)
|
| 114 |
+
self.return_dict_in_generate: bool = kwargs.pop("return_dict_in_generate", False)
|
| 115 |
+
self.output_history: bool = kwargs.pop("output_history", False)
|
| 116 |
+
|
| 117 |
+
# Special tokens that can be used at generation time
|
| 118 |
+
self.mask_token_id = kwargs.pop("mask_token_id", None)
|
| 119 |
+
self.pad_token_id = kwargs.pop("pad_token_id", None)
|
| 120 |
+
self.bos_token_id = kwargs.pop("bos_token_id", None)
|
| 121 |
+
self.eos_token_id = kwargs.pop("eos_token_id", None)
|
| 122 |
+
|
| 123 |
+
# Wild card
|
| 124 |
+
self.generation_kwargs = kwargs.pop("generation_kwargs", {})
|
| 125 |
+
|
| 126 |
+
# The remaining attributes do not parametrize `.generate()`, but are informative and/or used by the hub
|
| 127 |
+
# interface.
|
| 128 |
+
self._from_model_config = kwargs.pop("_from_model_config", False)
|
| 129 |
+
self._commit_hash = kwargs.pop("_commit_hash", None)
|
| 130 |
+
self.transformers_version = kwargs.pop("transformers_version", __version__)
|
| 131 |
+
|
| 132 |
+
# Additional attributes without default values
|
| 133 |
+
if not self._from_model_config:
|
| 134 |
+
# we don't want to copy values from the model config if we're initializing a `GenerationConfig` from a
|
| 135 |
+
# model's default configuration file
|
| 136 |
+
for key, value in kwargs.items():
|
| 137 |
+
try:
|
| 138 |
+
setattr(self, key, value)
|
| 139 |
+
except AttributeError as err:
|
| 140 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
| 141 |
+
raise err
|
| 142 |
+
|
| 143 |
+
# Validate the values of the attributes
|
| 144 |
+
self.validate(is_init=True)
|
| 145 |
+
|
| 146 |
+
def validate(self, is_init=False):
|
| 147 |
+
pass
|
| 148 |
+
|
| 149 |
+
class DreamGenerationMixin:
|
| 150 |
+
@staticmethod
|
| 151 |
+
def _expand_inputs_for_generation(
|
| 152 |
+
expand_size: int = 1,
|
| 153 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 154 |
+
attention_mask: Optional[torch.LongTensor] = None
|
| 155 |
+
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
|
| 156 |
+
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
|
| 157 |
+
# Do not call torch.repeat_interleave if expand_size is 1 because it clones
|
| 158 |
+
# the input tensor and thus requires more memory although no change is applied
|
| 159 |
+
if expand_size == 1:
|
| 160 |
+
return input_ids, attention_mask
|
| 161 |
+
if input_ids is not None:
|
| 162 |
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
| 163 |
+
if attention_mask is not None:
|
| 164 |
+
attention_mask = attention_mask.repeat_interleave(expand_size, dim=0)
|
| 165 |
+
return input_ids, attention_mask
|
| 166 |
+
|
| 167 |
+
def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
|
| 168 |
+
"""Performs validation related to the resulting generated length"""
|
| 169 |
+
|
| 170 |
+
# Can't throw warnings/exceptions during compilation
|
| 171 |
+
if is_torchdynamo_compiling():
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
# 1. Max length warnings related to poor parameterization
|
| 175 |
+
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
|
| 176 |
+
# 20 is the default max_length of the generation config
|
| 177 |
+
warnings.warn(
|
| 178 |
+
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
|
| 179 |
+
"generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
|
| 180 |
+
"generation.",
|
| 181 |
+
UserWarning,
|
| 182 |
+
)
|
| 183 |
+
if input_ids_length >= generation_config.max_length:
|
| 184 |
+
input_ids_string = "input_ids"
|
| 185 |
+
raise ValueError(
|
| 186 |
+
f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
|
| 187 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
| 188 |
+
" increasing `max_length` or, better yet, setting `max_new_tokens`."
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
def _prepare_generated_length(
|
| 192 |
+
self,
|
| 193 |
+
generation_config,
|
| 194 |
+
has_default_max_length,
|
| 195 |
+
input_ids_length,
|
| 196 |
+
):
|
| 197 |
+
"""Prepared max and min length in generation configs to avoid clashes between similar attributes"""
|
| 198 |
+
|
| 199 |
+
if generation_config.max_new_tokens is not None:
|
| 200 |
+
if not has_default_max_length and generation_config.max_length is not None:
|
| 201 |
+
logger.warning(
|
| 202 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
| 203 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
| 204 |
+
"Please refer to the documentation for more information. "
|
| 205 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
|
| 206 |
+
)
|
| 207 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
|
| 208 |
+
|
| 209 |
+
elif has_default_max_length:
|
| 210 |
+
if generation_config.max_length == DreamGenerationConfig().max_length:
|
| 211 |
+
generation_config.max_length = generation_config.max_length + input_ids_length
|
| 212 |
+
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
|
| 213 |
+
if max_position_embeddings is not None:
|
| 214 |
+
generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
|
| 215 |
+
|
| 216 |
+
return generation_config
|
| 217 |
+
|
| 218 |
+
def _prepare_generation_config(
|
| 219 |
+
self, generation_config: Optional[DreamGenerationConfig], **kwargs: Dict
|
| 220 |
+
) -> DreamGenerationConfig:
|
| 221 |
+
"""
|
| 222 |
+
Prepares the base generation config, then applies any generation configuration options from kwargs. This
|
| 223 |
+
function handles retrocompatibility with respect to configuration files.
|
| 224 |
+
"""
|
| 225 |
+
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
|
| 226 |
+
using_model_generation_config = False
|
| 227 |
+
if generation_config is None:
|
| 228 |
+
generation_config = DreamGenerationConfig.from_model_config(self.config)
|
| 229 |
+
using_model_generation_config = True
|
| 230 |
+
|
| 231 |
+
# `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
|
| 232 |
+
# will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
|
| 233 |
+
# exception will be raised in `_validate_model_kwargs`
|
| 234 |
+
if not is_torchdynamo_compiling():
|
| 235 |
+
generation_config = copy.deepcopy(generation_config)
|
| 236 |
+
_kwargs = generation_config.update(**kwargs)
|
| 237 |
+
# If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
|
| 238 |
+
if not using_model_generation_config:
|
| 239 |
+
if generation_config.bos_token_id is None:
|
| 240 |
+
generation_config.bos_token_id = self.generation_config.bos_token_id
|
| 241 |
+
if generation_config.eos_token_id is None:
|
| 242 |
+
generation_config.eos_token_id = self.generation_config.eos_token_id
|
| 243 |
+
if generation_config.pad_token_id is None:
|
| 244 |
+
generation_config.pad_token_id = self.generation_config.pad_token_id
|
| 245 |
+
if generation_config.mask_token_id is None:
|
| 246 |
+
generation_config.mask_token_id = self.generation_config.mask_token_id
|
| 247 |
+
|
| 248 |
+
return generation_config
|
| 249 |
+
|
| 250 |
+
def _prepare_special_tokens(
|
| 251 |
+
self,
|
| 252 |
+
generation_config: DreamGenerationConfig,
|
| 253 |
+
device: Optional[Union[torch.device, str]] = None,
|
| 254 |
+
):
|
| 255 |
+
"""
|
| 256 |
+
Prepares the special tokens for generation, overwriting the generation config with their processed versions
|
| 257 |
+
converted to tensor.
|
| 258 |
+
|
| 259 |
+
Note that `generation_config` is changed in place and stops being serializable after this method is called.
|
| 260 |
+
That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
|
| 261 |
+
function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
# Convert special tokens to tensors
|
| 265 |
+
def _tensor_or_none(token, device=None):
|
| 266 |
+
if token is None:
|
| 267 |
+
return token
|
| 268 |
+
|
| 269 |
+
device = device if device is not None else self.device
|
| 270 |
+
if isinstance(token, torch.Tensor):
|
| 271 |
+
return token.to(device)
|
| 272 |
+
return torch.tensor(token, device=device, dtype=torch.long)
|
| 273 |
+
|
| 274 |
+
bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
|
| 275 |
+
eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
|
| 276 |
+
pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
|
| 277 |
+
mask_token_tensor = _tensor_or_none(generation_config.mask_token_id, device=device)
|
| 278 |
+
|
| 279 |
+
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
|
| 280 |
+
if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
|
| 281 |
+
eos_token_tensor = eos_token_tensor.unsqueeze(0)
|
| 282 |
+
|
| 283 |
+
# Set pad token if unset (and there are conditions to do so)
|
| 284 |
+
if pad_token_tensor is None and eos_token_tensor is not None:
|
| 285 |
+
pad_token_tensor = eos_token_tensor[0]
|
| 286 |
+
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
|
| 287 |
+
|
| 288 |
+
# Update generation config with the updated special tokens tensors
|
| 289 |
+
# NOTE: this must be written into a different attribute name than the one holding the original special tokens
|
| 290 |
+
# (in their non-tensor form), in order to enable end-to-end compilation. See
|
| 291 |
+
# https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
|
| 292 |
+
generation_config._bos_token_tensor = bos_token_tensor
|
| 293 |
+
generation_config._eos_token_tensor = eos_token_tensor
|
| 294 |
+
generation_config._pad_token_tensor = pad_token_tensor
|
| 295 |
+
generation_config._mask_token_tensor = mask_token_tensor
|
| 296 |
+
|
| 297 |
+
@torch.no_grad()
|
| 298 |
+
def diffusion_generate(
|
| 299 |
+
self,
|
| 300 |
+
inputs: Optional[torch.Tensor] = None,
|
| 301 |
+
generation_config: Optional[DreamGenerationConfig] = None,
|
| 302 |
+
**kwargs,
|
| 303 |
+
) -> Union[DreamModelOutput, torch.LongTensor]:
|
| 304 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
| 305 |
+
generation_config = self._prepare_generation_config(generation_config, **kwargs)
|
| 306 |
+
generation_tokens_hook_func = kwargs.pop("generation_tokens_hook_func", lambda step, x, logits: x)
|
| 307 |
+
generation_logits_hook_func = kwargs.pop("generation_logits_hook_func", lambda step, x, logits: logits)
|
| 308 |
+
|
| 309 |
+
# 2. Define model inputs
|
| 310 |
+
assert inputs is not None
|
| 311 |
+
input_ids = inputs
|
| 312 |
+
device = input_ids.device
|
| 313 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
| 314 |
+
self._prepare_special_tokens(generation_config, device=device)
|
| 315 |
+
|
| 316 |
+
# 3. Prepare `max_length`.
|
| 317 |
+
input_ids_length = input_ids.shape[-1]
|
| 318 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
| 319 |
+
generation_config = self._prepare_generated_length(
|
| 320 |
+
generation_config=generation_config,
|
| 321 |
+
has_default_max_length=has_default_max_length,
|
| 322 |
+
input_ids_length=input_ids_length,
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
|
| 326 |
+
|
| 327 |
+
# 4. Check input_ids
|
| 328 |
+
if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
|
| 329 |
+
warnings.warn(
|
| 330 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
| 331 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
| 332 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
| 333 |
+
" Please make sure that you have put `input_ids` to the"
|
| 334 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
| 335 |
+
" running `.generate()`.",
|
| 336 |
+
UserWarning,
|
| 337 |
+
)
|
| 338 |
+
if (
|
| 339 |
+
hasattr(generation_config, "pad_token_id") and
|
| 340 |
+
torch.any(input_ids == generation_config.pad_token_id) and
|
| 341 |
+
attention_mask is None
|
| 342 |
+
):
|
| 343 |
+
warnings.warn(
|
| 344 |
+
"Padding was detected but no attention mask is passed here. For correct "
|
| 345 |
+
"generation results, please set `attention_mask` when batch-padding inputs.",
|
| 346 |
+
UserWarning,
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
input_ids, attention_mask = self._expand_inputs_for_generation(
|
| 350 |
+
expand_size=generation_config.num_return_sequences,
|
| 351 |
+
input_ids=input_ids,
|
| 352 |
+
attention_mask=attention_mask
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
result = self._sample(
|
| 356 |
+
input_ids,
|
| 357 |
+
attention_mask=attention_mask,
|
| 358 |
+
generation_config=generation_config,
|
| 359 |
+
generation_tokens_hook_func=generation_tokens_hook_func,
|
| 360 |
+
generation_logits_hook_func=generation_logits_hook_func
|
| 361 |
+
)
|
| 362 |
+
return result
|
| 363 |
+
|
| 364 |
+
def _sample(
|
| 365 |
+
self,
|
| 366 |
+
input_ids: torch.LongTensor,
|
| 367 |
+
attention_mask: Optional[torch.LongTensor],
|
| 368 |
+
generation_config: DreamGenerationConfig,
|
| 369 |
+
generation_tokens_hook_func,
|
| 370 |
+
generation_logits_hook_func
|
| 371 |
+
) -> Union[DreamModelOutput, torch.LongTensor]:
|
| 372 |
+
# init values
|
| 373 |
+
output_history = generation_config.output_history
|
| 374 |
+
return_dict_in_generate = generation_config.return_dict_in_generate
|
| 375 |
+
max_length = generation_config.max_length
|
| 376 |
+
mask_token_id = generation_config.mask_token_id
|
| 377 |
+
steps = generation_config.steps
|
| 378 |
+
eps = generation_config.eps
|
| 379 |
+
alg = generation_config.alg
|
| 380 |
+
alg_temp = generation_config.alg_temp
|
| 381 |
+
temperature = generation_config.temperature
|
| 382 |
+
top_p = generation_config.top_p
|
| 383 |
+
top_k = generation_config.top_k
|
| 384 |
+
|
| 385 |
+
histories = [] if (return_dict_in_generate and output_history) else None
|
| 386 |
+
|
| 387 |
+
# pad input_ids to max_length
|
| 388 |
+
x = F.pad(input_ids, (0, max_length - input_ids.shape[1]), value=mask_token_id)
|
| 389 |
+
|
| 390 |
+
if attention_mask is not None and torch.any(attention_mask == 0.0):
|
| 391 |
+
# we do not mask the [MASK] tokens so value = 1.0
|
| 392 |
+
attention_mask = F.pad(attention_mask, (0, max_length - attention_mask.shape[1]), value=1.0)
|
| 393 |
+
tok_idx = attention_mask.long().cumsum(-1) - 1
|
| 394 |
+
tok_idx.masked_fill_(attention_mask == 0, 1)
|
| 395 |
+
# attention_mask is of shape [B, N]
|
| 396 |
+
# broadcast to [B, 1, N, N]
|
| 397 |
+
attention_mask = torch.logical_and(
|
| 398 |
+
attention_mask.unsqueeze(1).unsqueeze(-2),
|
| 399 |
+
attention_mask.unsqueeze(1).unsqueeze(-1),
|
| 400 |
+
)
|
| 401 |
+
else:
|
| 402 |
+
tok_idx = None
|
| 403 |
+
attention_mask = "full"
|
| 404 |
+
|
| 405 |
+
timesteps = torch.linspace(1, eps, steps + 1, device=x.device)
|
| 406 |
+
|
| 407 |
+
# this allows user-defined token control of the intermediate steps
|
| 408 |
+
x = generation_tokens_hook_func(None, x, None)
|
| 409 |
+
for i in range(steps):
|
| 410 |
+
mask_index = (x == mask_token_id)
|
| 411 |
+
logits = self(x, attention_mask, tok_idx).logits
|
| 412 |
+
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1)
|
| 413 |
+
|
| 414 |
+
# this allows user-defined logits control of the intermediate steps
|
| 415 |
+
logits = generation_logits_hook_func(i, x, logits)
|
| 416 |
+
|
| 417 |
+
mask_logits = logits[mask_index]
|
| 418 |
+
t = timesteps[i]
|
| 419 |
+
s = timesteps[i + 1]
|
| 420 |
+
|
| 421 |
+
if alg == 'origin':
|
| 422 |
+
p_transfer = 1 - s / t if i < steps - 1 else 1
|
| 423 |
+
x0 = torch.zeros_like(x[mask_index], device=self.device, dtype=torch.long) + mask_token_id
|
| 424 |
+
transfer_index_t_s = torch.rand(*x0.shape, device=self.device) < p_transfer
|
| 425 |
+
_, x0[transfer_index_t_s]= sample_tokens(mask_logits[transfer_index_t_s], temperature=temperature, top_p=top_p, top_k=top_k)
|
| 426 |
+
x[mask_index] = x0.clone()
|
| 427 |
+
else:
|
| 428 |
+
if alg == 'maskgit_plus':
|
| 429 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k)
|
| 430 |
+
elif alg == 'topk_margin':
|
| 431 |
+
confidence, x0 = sample_tokens(mask_logits, temperature=temperature, top_p=top_p, top_k=top_k, margin_confidence=True)
|
| 432 |
+
elif alg == 'entropy':
|
| 433 |
+
confidence, x0 = sample_tokens(mask_logits, temperature, top_p=top_p, top_k=top_k, neg_entropy=True)
|
| 434 |
+
else:
|
| 435 |
+
raise RuntimeError(f"Unknown alg: {alg}")
|
| 436 |
+
num_mask_token = mask_index.sum() / mask_index.shape[0]
|
| 437 |
+
number_transfer_tokens = int(num_mask_token * (1 - s / t)) if i < steps - 1 else int(num_mask_token)
|
| 438 |
+
full_confidence = torch.full_like(x, -torch.inf, device=self.device, dtype=logits.dtype)
|
| 439 |
+
full_confidence[mask_index] = confidence
|
| 440 |
+
if number_transfer_tokens > 0:
|
| 441 |
+
if alg_temp is None or alg_temp == 0:
|
| 442 |
+
_, transfer_index = torch.topk(full_confidence, number_transfer_tokens)
|
| 443 |
+
else:
|
| 444 |
+
full_confidence = full_confidence / alg_temp
|
| 445 |
+
full_confidence = F.softmax(full_confidence, dim=-1)
|
| 446 |
+
transfer_index = torch.multinomial(full_confidence, num_samples=number_transfer_tokens)
|
| 447 |
+
x_ = torch.zeros_like(x, device=self.device, dtype=torch.long) + mask_token_id
|
| 448 |
+
x_[mask_index] = x0.clone()
|
| 449 |
+
row_indices = torch.arange(x.size(0), device=self.device).unsqueeze(1).expand_as(transfer_index)
|
| 450 |
+
x[row_indices,transfer_index] = x_[row_indices,transfer_index]
|
| 451 |
+
|
| 452 |
+
# this allows user-defined token control of the intermediate steps
|
| 453 |
+
x = generation_tokens_hook_func(i, x, logits)
|
| 454 |
+
|
| 455 |
+
if histories is not None:
|
| 456 |
+
histories.append(x.clone())
|
| 457 |
+
|
| 458 |
+
if return_dict_in_generate:
|
| 459 |
+
return DreamModelOutput(
|
| 460 |
+
sequences=x,
|
| 461 |
+
history=histories,
|
| 462 |
+
)
|
| 463 |
+
else:
|
| 464 |
+
return x
|