Upload modeling_dream.py
Browse files- modeling_dream.py +824 -0
modeling_dream.py
ADDED
|
@@ -0,0 +1,824 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Dream team, HKUNLP Group and the HuggingFace Inc. team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 5 |
+
# and OPT and Qwen implementations in this library. It has been modified from its
|
| 6 |
+
# original forms to accommodate minor architectural differences compared
|
| 7 |
+
# to GPT-NeoX and OPT and Qwen used by the Meta AI and Qwen team that trained the model.
|
| 8 |
+
#
|
| 9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 10 |
+
# you may not use this file except in compliance with the License.
|
| 11 |
+
# You may obtain a copy of the License at
|
| 12 |
+
#
|
| 13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 14 |
+
#
|
| 15 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 18 |
+
# See the License for the specific language governing permissions and
|
| 19 |
+
# limitations under the License.
|
| 20 |
+
"""PyTorch Dream model."""
|
| 21 |
+
|
| 22 |
+
import math
|
| 23 |
+
from typing import List, Optional, Tuple, Union
|
| 24 |
+
import os
|
| 25 |
+
import torch
|
| 26 |
+
import torch.utils.checkpoint
|
| 27 |
+
from torch import nn
|
| 28 |
+
|
| 29 |
+
from transformers.activations import ACT2FN
|
| 30 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 31 |
+
from transformers.modeling_outputs import (
|
| 32 |
+
BaseModelOutput,
|
| 33 |
+
MaskedLMOutput,
|
| 34 |
+
)
|
| 35 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.utils import (
|
| 38 |
+
add_start_docstrings,
|
| 39 |
+
add_start_docstrings_to_model_forward,
|
| 40 |
+
is_flash_attn_2_available,
|
| 41 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 42 |
+
logging,
|
| 43 |
+
)
|
| 44 |
+
from transformers import PretrainedConfig
|
| 45 |
+
from .configuration_dream import DreamConfig
|
| 46 |
+
from .generation_utils import DreamGenerationMixin, DreamGenerationConfig
|
| 47 |
+
|
| 48 |
+
if is_flash_attn_2_available():
|
| 49 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
logger = logging.get_logger(__name__)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
_CHECKPOINT_FOR_DOC = "Dream-7B"
|
| 56 |
+
_CONFIG_FOR_DOC = "DreamConfig"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Dream
|
| 60 |
+
class DreamRMSNorm(nn.Module):
|
| 61 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 62 |
+
"""
|
| 63 |
+
DreamRMSNorm is equivalent to T5LayerNorm
|
| 64 |
+
"""
|
| 65 |
+
super().__init__()
|
| 66 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 67 |
+
self.variance_epsilon = eps
|
| 68 |
+
|
| 69 |
+
def forward(self, hidden_states):
|
| 70 |
+
input_dtype = hidden_states.dtype
|
| 71 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 72 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 73 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 74 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 75 |
+
|
| 76 |
+
def extra_repr(self):
|
| 77 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Dream
|
| 81 |
+
class DreamRotaryEmbedding(nn.Module):
|
| 82 |
+
def __init__(
|
| 83 |
+
self,
|
| 84 |
+
dim=None,
|
| 85 |
+
max_position_embeddings=2048,
|
| 86 |
+
base=10000,
|
| 87 |
+
device=None,
|
| 88 |
+
scaling_factor=1.0,
|
| 89 |
+
rope_type="default",
|
| 90 |
+
config: Optional[DreamConfig] = None,
|
| 91 |
+
):
|
| 92 |
+
super().__init__()
|
| 93 |
+
# TODO (joao): remove the `if` below, only used for BC
|
| 94 |
+
self.rope_kwargs = {}
|
| 95 |
+
if config is None:
|
| 96 |
+
logger.warning_once(
|
| 97 |
+
"`DreamRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
| 98 |
+
"`config` argument. All other arguments will be removed in v4.46"
|
| 99 |
+
)
|
| 100 |
+
self.rope_kwargs = {
|
| 101 |
+
"rope_type": rope_type,
|
| 102 |
+
"factor": scaling_factor,
|
| 103 |
+
"dim": dim,
|
| 104 |
+
"base": base,
|
| 105 |
+
"max_position_embeddings": max_position_embeddings,
|
| 106 |
+
}
|
| 107 |
+
self.rope_type = rope_type
|
| 108 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 109 |
+
self.original_max_seq_len = max_position_embeddings
|
| 110 |
+
else:
|
| 111 |
+
# BC: "rope_type" was originally "type"
|
| 112 |
+
if config.rope_scaling is not None:
|
| 113 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 114 |
+
else:
|
| 115 |
+
self.rope_type = "default"
|
| 116 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 117 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 118 |
+
|
| 119 |
+
self.config = config
|
| 120 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 121 |
+
|
| 122 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
| 123 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 124 |
+
self.original_inv_freq = self.inv_freq
|
| 125 |
+
|
| 126 |
+
def reset_parameters(self):
|
| 127 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, self.inv_freq.device, **self.rope_kwargs)
|
| 128 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 129 |
+
self.original_inv_freq = self.inv_freq
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def _dynamic_frequency_update(self, position_ids, device):
|
| 133 |
+
"""
|
| 134 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 135 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 136 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 137 |
+
"""
|
| 138 |
+
seq_len = torch.max(position_ids) + 1
|
| 139 |
+
if seq_len > self.max_seq_len_cached: # growth
|
| 140 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
| 141 |
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
| 142 |
+
)
|
| 143 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
| 144 |
+
self.max_seq_len_cached = seq_len
|
| 145 |
+
|
| 146 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
| 147 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 148 |
+
self.max_seq_len_cached = self.original_max_seq_len
|
| 149 |
+
|
| 150 |
+
@torch.no_grad()
|
| 151 |
+
def forward(self, x, position_ids):
|
| 152 |
+
if "dynamic" in self.rope_type:
|
| 153 |
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
| 154 |
+
|
| 155 |
+
# Core RoPE block
|
| 156 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 157 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 158 |
+
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
|
| 159 |
+
device_type = x.device.type
|
| 160 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 161 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 162 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 163 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 164 |
+
cos = emb.cos()
|
| 165 |
+
sin = emb.sin()
|
| 166 |
+
|
| 167 |
+
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
| 168 |
+
cos = cos * self.attention_scaling
|
| 169 |
+
sin = sin * self.attention_scaling
|
| 170 |
+
|
| 171 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
| 175 |
+
def rotate_half(x):
|
| 176 |
+
"""Rotates half the hidden dims of the input."""
|
| 177 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 178 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 179 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
|
| 183 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 184 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 185 |
+
|
| 186 |
+
Args:
|
| 187 |
+
q (`torch.Tensor`): The query tensor.
|
| 188 |
+
k (`torch.Tensor`): The key tensor.
|
| 189 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 190 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 191 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 192 |
+
Deprecated and unused.
|
| 193 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 194 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 195 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 196 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 197 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 198 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 199 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 200 |
+
Returns:
|
| 201 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 202 |
+
"""
|
| 203 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 204 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 205 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 206 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 207 |
+
return q_embed, k_embed
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Dream
|
| 211 |
+
class DreamMLP(nn.Module):
|
| 212 |
+
def __init__(self, config):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.hidden_size = config.hidden_size
|
| 215 |
+
self.intermediate_size = config.intermediate_size
|
| 216 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 217 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 218 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 219 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 220 |
+
|
| 221 |
+
def forward(self, hidden_state):
|
| 222 |
+
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
| 226 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 227 |
+
"""
|
| 228 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 229 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 230 |
+
"""
|
| 231 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 232 |
+
if n_rep == 1:
|
| 233 |
+
return hidden_states
|
| 234 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 235 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
class DreamAttention(nn.Module):
|
| 239 |
+
"""
|
| 240 |
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
| 241 |
+
and "Generating Long Sequences with Sparse Transformers".
|
| 242 |
+
"""
|
| 243 |
+
|
| 244 |
+
def __init__(self, config: DreamConfig, layer_idx: Optional[int] = None):
|
| 245 |
+
super().__init__()
|
| 246 |
+
self.config = config
|
| 247 |
+
self.layer_idx = layer_idx
|
| 248 |
+
if layer_idx is None:
|
| 249 |
+
logger.warning_once(
|
| 250 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
| 251 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
| 252 |
+
"when creating this class."
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
self.hidden_size = config.hidden_size
|
| 256 |
+
self.num_heads = config.num_attention_heads
|
| 257 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 258 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 259 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 260 |
+
self.max_position_embeddings = config.max_position_embeddings
|
| 261 |
+
self.rope_theta = config.rope_theta
|
| 262 |
+
self.is_causal = False
|
| 263 |
+
self.attention_dropout = config.attention_dropout
|
| 264 |
+
|
| 265 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
| 266 |
+
raise ValueError(
|
| 267 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
| 268 |
+
f" and `num_heads`: {self.num_heads})."
|
| 269 |
+
)
|
| 270 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=True)
|
| 271 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 272 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True)
|
| 273 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
| 274 |
+
|
| 275 |
+
self.rotary_emb = DreamRotaryEmbedding(config=self.config)
|
| 276 |
+
|
| 277 |
+
def forward(
|
| 278 |
+
self,
|
| 279 |
+
hidden_states: torch.Tensor,
|
| 280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 281 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 282 |
+
past_key_value: Optional[Cache] = None,
|
| 283 |
+
output_attentions: bool = False,
|
| 284 |
+
use_cache: bool = False,
|
| 285 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 286 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 287 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 288 |
+
bsz, q_len, _ = hidden_states.size()
|
| 289 |
+
|
| 290 |
+
query_states = self.q_proj(hidden_states)
|
| 291 |
+
key_states = self.k_proj(hidden_states)
|
| 292 |
+
value_states = self.v_proj(hidden_states)
|
| 293 |
+
|
| 294 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 295 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 296 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 297 |
+
|
| 298 |
+
if position_embeddings is None:
|
| 299 |
+
logger.warning_once(
|
| 300 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 301 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 302 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 303 |
+
"removed and `position_embeddings` will be mandatory."
|
| 304 |
+
)
|
| 305 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 306 |
+
else:
|
| 307 |
+
cos, sin = position_embeddings
|
| 308 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 309 |
+
|
| 310 |
+
if past_key_value is not None:
|
| 311 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 312 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 313 |
+
|
| 314 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
| 315 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 316 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 317 |
+
|
| 318 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 319 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 320 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 321 |
+
attn_weights = attn_weights + causal_mask
|
| 322 |
+
|
| 323 |
+
# upcast attention to fp32
|
| 324 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 325 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
| 326 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 327 |
+
|
| 328 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 329 |
+
raise ValueError(
|
| 330 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 331 |
+
f" {attn_output.size()}"
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 335 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 336 |
+
|
| 337 |
+
attn_output = self.o_proj(attn_output)
|
| 338 |
+
|
| 339 |
+
if not output_attentions:
|
| 340 |
+
attn_weights = None
|
| 341 |
+
|
| 342 |
+
return attn_output, attn_weights, past_key_value
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class DreamSdpaAttention(DreamAttention):
|
| 346 |
+
"""
|
| 347 |
+
Dream attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 348 |
+
`DreamAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 349 |
+
SDPA API.
|
| 350 |
+
"""
|
| 351 |
+
|
| 352 |
+
# Adapted from DreamAttention.forward
|
| 353 |
+
def forward(
|
| 354 |
+
self,
|
| 355 |
+
hidden_states: torch.Tensor,
|
| 356 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 357 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 358 |
+
past_key_value: Optional[Cache] = None,
|
| 359 |
+
output_attentions: bool = False,
|
| 360 |
+
use_cache: bool = False,
|
| 361 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 362 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 363 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 364 |
+
if output_attentions:
|
| 365 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
| 366 |
+
logger.warning_once(
|
| 367 |
+
"DreamModel is using DreamSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 368 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 369 |
+
)
|
| 370 |
+
return super().forward(
|
| 371 |
+
hidden_states=hidden_states,
|
| 372 |
+
attention_mask=attention_mask,
|
| 373 |
+
position_ids=position_ids,
|
| 374 |
+
past_key_value=past_key_value,
|
| 375 |
+
output_attentions=output_attentions,
|
| 376 |
+
use_cache=use_cache,
|
| 377 |
+
)
|
| 378 |
+
|
| 379 |
+
bsz, q_len, _ = hidden_states.size()
|
| 380 |
+
|
| 381 |
+
query_states = self.q_proj(hidden_states)
|
| 382 |
+
key_states = self.k_proj(hidden_states)
|
| 383 |
+
value_states = self.v_proj(hidden_states)
|
| 384 |
+
|
| 385 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 386 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 387 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 388 |
+
|
| 389 |
+
if position_embeddings is None:
|
| 390 |
+
logger.warning_once(
|
| 391 |
+
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
| 392 |
+
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
| 393 |
+
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.46 `position_ids` will be "
|
| 394 |
+
"removed and `position_embeddings` will be mandatory."
|
| 395 |
+
)
|
| 396 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 397 |
+
else:
|
| 398 |
+
cos, sin = position_embeddings
|
| 399 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 400 |
+
|
| 401 |
+
if past_key_value is not None:
|
| 402 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} # Specific to RoPE models
|
| 403 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 404 |
+
|
| 405 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 406 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 407 |
+
|
| 408 |
+
# causal_mask = attention_mask
|
| 409 |
+
# if attention_mask is not None: # no matter the length, we just slice it
|
| 410 |
+
# causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 411 |
+
|
| 412 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 413 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 414 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
| 415 |
+
query_states = query_states.contiguous()
|
| 416 |
+
key_states = key_states.contiguous()
|
| 417 |
+
value_states = value_states.contiguous()
|
| 418 |
+
|
| 419 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 420 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 421 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
| 422 |
+
# is_causal = True if causal_mask is None and q_len > 1 else False
|
| 423 |
+
|
| 424 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 425 |
+
query_states,
|
| 426 |
+
key_states,
|
| 427 |
+
value_states,
|
| 428 |
+
attn_mask=attention_mask.to(query_states.dtype) if isinstance(attention_mask, torch.Tensor) else None,
|
| 429 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
| 430 |
+
is_causal=False, # hard coded
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 434 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 435 |
+
|
| 436 |
+
attn_output = self.o_proj(attn_output)
|
| 437 |
+
|
| 438 |
+
return attn_output, None, past_key_value
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
class DreamDecoderLayer(nn.Module):
|
| 442 |
+
def __init__(self, config: DreamConfig, layer_idx: int):
|
| 443 |
+
super().__init__()
|
| 444 |
+
self.hidden_size = config.hidden_size
|
| 445 |
+
|
| 446 |
+
if config.sliding_window and config._attn_implementation != "flash_attention_2":
|
| 447 |
+
logger.warning_once(
|
| 448 |
+
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
|
| 449 |
+
"unexpected results may be encountered."
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
# self.self_attn = Dream_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
|
| 453 |
+
self.self_attn = DreamSdpaAttention(config, layer_idx)
|
| 454 |
+
|
| 455 |
+
self.mlp = DreamMLP(config)
|
| 456 |
+
self.input_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 457 |
+
self.post_attention_layernorm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 458 |
+
|
| 459 |
+
def forward(
|
| 460 |
+
self,
|
| 461 |
+
hidden_states: torch.Tensor,
|
| 462 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 463 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 464 |
+
past_key_value: Optional[Tuple[torch.FloatTensor]] = None,
|
| 465 |
+
output_attentions: Optional[bool] = False,
|
| 466 |
+
use_cache: Optional[bool] = False,
|
| 467 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 468 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46
|
| 469 |
+
**kwargs,
|
| 470 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 471 |
+
"""
|
| 472 |
+
Args:
|
| 473 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
| 474 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
| 475 |
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
| 476 |
+
output_attentions (`bool`, *optional*):
|
| 477 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
| 478 |
+
returned tensors for more detail.
|
| 479 |
+
use_cache (`bool`, *optional*):
|
| 480 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
| 481 |
+
(see `past_key_values`).
|
| 482 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 483 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 484 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 485 |
+
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
|
| 486 |
+
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
|
| 487 |
+
with `head_dim` being the embedding dimension of each attention head.
|
| 488 |
+
kwargs (`dict`, *optional*):
|
| 489 |
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
| 490 |
+
into the model
|
| 491 |
+
"""
|
| 492 |
+
|
| 493 |
+
residual = hidden_states
|
| 494 |
+
|
| 495 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 496 |
+
|
| 497 |
+
# Self Attention
|
| 498 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
| 499 |
+
hidden_states=hidden_states,
|
| 500 |
+
attention_mask=attention_mask,
|
| 501 |
+
position_ids=position_ids,
|
| 502 |
+
past_key_value=past_key_value,
|
| 503 |
+
output_attentions=output_attentions,
|
| 504 |
+
use_cache=use_cache,
|
| 505 |
+
cache_position=cache_position,
|
| 506 |
+
position_embeddings=position_embeddings,
|
| 507 |
+
)
|
| 508 |
+
hidden_states = residual + hidden_states
|
| 509 |
+
|
| 510 |
+
# Fully Connected
|
| 511 |
+
residual = hidden_states
|
| 512 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 513 |
+
hidden_states = self.mlp(hidden_states)
|
| 514 |
+
hidden_states = residual + hidden_states
|
| 515 |
+
|
| 516 |
+
outputs = (hidden_states,)
|
| 517 |
+
|
| 518 |
+
if output_attentions:
|
| 519 |
+
outputs += (self_attn_weights,)
|
| 520 |
+
|
| 521 |
+
if use_cache:
|
| 522 |
+
outputs += (present_key_value,)
|
| 523 |
+
|
| 524 |
+
return outputs
|
| 525 |
+
|
| 526 |
+
class DreamPreTrainedModel(PreTrainedModel):
|
| 527 |
+
config_class = DreamConfig
|
| 528 |
+
base_model_prefix = "model"
|
| 529 |
+
supports_gradient_checkpointing = True
|
| 530 |
+
_no_split_modules = ["DreamDecoderLayer"]
|
| 531 |
+
_skip_keys_device_placement = "past_key_values"
|
| 532 |
+
_supports_flash_attn_2 = True
|
| 533 |
+
_supports_sdpa = True
|
| 534 |
+
_supports_cache_class = True
|
| 535 |
+
_supports_quantized_cache = True
|
| 536 |
+
_supports_static_cache = True
|
| 537 |
+
|
| 538 |
+
def _init_weights(self, module):
|
| 539 |
+
std = self.config.initializer_range
|
| 540 |
+
if isinstance(module, nn.Linear):
|
| 541 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 542 |
+
if module.bias is not None:
|
| 543 |
+
module.bias.data.zero_()
|
| 544 |
+
elif isinstance(module, nn.Embedding):
|
| 545 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 546 |
+
if module.padding_idx is not None:
|
| 547 |
+
module.weight.data[module.padding_idx].zero_()
|
| 548 |
+
|
| 549 |
+
@classmethod
|
| 550 |
+
def from_pretrained(
|
| 551 |
+
cls,
|
| 552 |
+
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
| 553 |
+
*model_args,
|
| 554 |
+
config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
|
| 555 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
| 556 |
+
ignore_mismatched_sizes: bool = False,
|
| 557 |
+
force_download: bool = False,
|
| 558 |
+
local_files_only: bool = False,
|
| 559 |
+
token: Optional[Union[str, bool]] = None,
|
| 560 |
+
revision: str = "main",
|
| 561 |
+
use_safetensors: Optional[bool] = None,
|
| 562 |
+
weights_only: bool = True,
|
| 563 |
+
**kwargs,
|
| 564 |
+
):
|
| 565 |
+
_model = super().from_pretrained(
|
| 566 |
+
pretrained_model_name_or_path,
|
| 567 |
+
*model_args,
|
| 568 |
+
config=config,
|
| 569 |
+
cache_dir=cache_dir,
|
| 570 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
| 571 |
+
force_download=force_download,
|
| 572 |
+
local_files_only=local_files_only,
|
| 573 |
+
token=token,
|
| 574 |
+
revision=revision,
|
| 575 |
+
use_safetensors=use_safetensors,
|
| 576 |
+
weights_only=weights_only,
|
| 577 |
+
**kwargs,
|
| 578 |
+
)
|
| 579 |
+
# NOTE(Lin): we need to override the generation config
|
| 580 |
+
# because the generation config loaded in `from_pretrained`
|
| 581 |
+
# does not include all the attributes of DreamGenerationConfig
|
| 582 |
+
resume_download = kwargs.get("resume_download", None)
|
| 583 |
+
proxies = kwargs.get("proxies", None)
|
| 584 |
+
subfolder = kwargs.get("subfolder", "")
|
| 585 |
+
from_auto_class = kwargs.get("_from_auto", False)
|
| 586 |
+
from_pipeline = kwargs.get("_from_pipeline", None)
|
| 587 |
+
_model.generation_config = DreamGenerationConfig.from_pretrained(
|
| 588 |
+
pretrained_model_name_or_path,
|
| 589 |
+
cache_dir=cache_dir,
|
| 590 |
+
force_download=force_download,
|
| 591 |
+
resume_download=resume_download,
|
| 592 |
+
proxies=proxies,
|
| 593 |
+
local_files_only=local_files_only,
|
| 594 |
+
token=token,
|
| 595 |
+
revision=revision,
|
| 596 |
+
subfolder=subfolder,
|
| 597 |
+
_from_auto=from_auto_class,
|
| 598 |
+
_from_pipeline=from_pipeline,
|
| 599 |
+
)
|
| 600 |
+
return _model
|
| 601 |
+
|
| 602 |
+
class DreamBaseModel(DreamPreTrainedModel):
|
| 603 |
+
"""
|
| 604 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DreamDecoderLayer`]
|
| 605 |
+
|
| 606 |
+
Args:
|
| 607 |
+
config: DreamConfig
|
| 608 |
+
"""
|
| 609 |
+
|
| 610 |
+
def __init__(self, config: DreamConfig):
|
| 611 |
+
super().__init__(config)
|
| 612 |
+
self.padding_idx = config.pad_token_id
|
| 613 |
+
self.vocab_size = config.vocab_size
|
| 614 |
+
|
| 615 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 616 |
+
self.layers = nn.ModuleList(
|
| 617 |
+
[DreamDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 618 |
+
)
|
| 619 |
+
self._attn_implementation = config._attn_implementation
|
| 620 |
+
self.norm = DreamRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 621 |
+
self.rotary_emb = DreamRotaryEmbedding(config=config)
|
| 622 |
+
|
| 623 |
+
self.gradient_checkpointing = False
|
| 624 |
+
# Initialize weights and apply final processing
|
| 625 |
+
self.post_init()
|
| 626 |
+
|
| 627 |
+
def get_input_embeddings(self):
|
| 628 |
+
return self.embed_tokens
|
| 629 |
+
|
| 630 |
+
def set_input_embeddings(self, value):
|
| 631 |
+
self.embed_tokens = value
|
| 632 |
+
|
| 633 |
+
def forward(
|
| 634 |
+
self,
|
| 635 |
+
input_ids: torch.LongTensor = None,
|
| 636 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 637 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 638 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 639 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 640 |
+
use_cache: Optional[bool] = None,
|
| 641 |
+
output_attentions: Optional[bool] = None,
|
| 642 |
+
output_hidden_states: Optional[bool] = None,
|
| 643 |
+
return_dict: Optional[bool] = None,
|
| 644 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 645 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 646 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 647 |
+
output_hidden_states = (
|
| 648 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 649 |
+
)
|
| 650 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 651 |
+
|
| 652 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 653 |
+
|
| 654 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 655 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 656 |
+
|
| 657 |
+
if self.gradient_checkpointing and self.training:
|
| 658 |
+
if use_cache:
|
| 659 |
+
logger.warning_once(
|
| 660 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 661 |
+
)
|
| 662 |
+
use_cache = False
|
| 663 |
+
|
| 664 |
+
if inputs_embeds is None:
|
| 665 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 666 |
+
|
| 667 |
+
if use_cache and past_key_values is None:
|
| 668 |
+
past_key_values = DynamicCache()
|
| 669 |
+
|
| 670 |
+
if cache_position is None:
|
| 671 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 672 |
+
cache_position = torch.arange(
|
| 673 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 674 |
+
)
|
| 675 |
+
|
| 676 |
+
if position_ids is None:
|
| 677 |
+
position_ids = cache_position.unsqueeze(0)
|
| 678 |
+
|
| 679 |
+
hidden_states = inputs_embeds
|
| 680 |
+
|
| 681 |
+
# create position embeddings to be shared across the decoder layers
|
| 682 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 683 |
+
|
| 684 |
+
# decoder layers
|
| 685 |
+
all_hidden_states = () if output_hidden_states else None
|
| 686 |
+
all_self_attns = () if output_attentions else None
|
| 687 |
+
|
| 688 |
+
for decoder_layer in self.layers:
|
| 689 |
+
if output_hidden_states:
|
| 690 |
+
all_hidden_states += (hidden_states,)
|
| 691 |
+
|
| 692 |
+
if self.gradient_checkpointing and self.training:
|
| 693 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 694 |
+
decoder_layer.__call__,
|
| 695 |
+
hidden_states,
|
| 696 |
+
attention_mask,
|
| 697 |
+
position_ids,
|
| 698 |
+
past_key_values,
|
| 699 |
+
output_attentions,
|
| 700 |
+
use_cache,
|
| 701 |
+
cache_position,
|
| 702 |
+
position_embeddings,
|
| 703 |
+
)
|
| 704 |
+
else:
|
| 705 |
+
layer_outputs = decoder_layer(
|
| 706 |
+
hidden_states,
|
| 707 |
+
attention_mask=attention_mask,
|
| 708 |
+
position_ids=position_ids,
|
| 709 |
+
past_key_value=past_key_values,
|
| 710 |
+
output_attentions=output_attentions,
|
| 711 |
+
use_cache=use_cache,
|
| 712 |
+
cache_position=cache_position,
|
| 713 |
+
position_embeddings=position_embeddings,
|
| 714 |
+
)
|
| 715 |
+
|
| 716 |
+
hidden_states = layer_outputs[0]
|
| 717 |
+
|
| 718 |
+
if output_attentions:
|
| 719 |
+
all_self_attns += (layer_outputs[1],)
|
| 720 |
+
|
| 721 |
+
hidden_states = self.norm(hidden_states)
|
| 722 |
+
|
| 723 |
+
# add hidden states from the last decoder layer
|
| 724 |
+
if output_hidden_states:
|
| 725 |
+
all_hidden_states += (hidden_states,)
|
| 726 |
+
|
| 727 |
+
if not return_dict:
|
| 728 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attns] if v is not None)
|
| 729 |
+
return BaseModelOutput(
|
| 730 |
+
last_hidden_state=hidden_states,
|
| 731 |
+
hidden_states=all_hidden_states,
|
| 732 |
+
attentions=all_self_attns,
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
|
| 736 |
+
class DreamModel(DreamGenerationMixin, DreamPreTrainedModel):
|
| 737 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 738 |
+
|
| 739 |
+
def __init__(self, config):
|
| 740 |
+
super().__init__(config)
|
| 741 |
+
self.model = DreamBaseModel(config)
|
| 742 |
+
self.vocab_size = config.vocab_size
|
| 743 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 744 |
+
|
| 745 |
+
# Initialize weights and apply final processing
|
| 746 |
+
self.post_init()
|
| 747 |
+
|
| 748 |
+
def reset_rope_parameters(self):
|
| 749 |
+
self.model.rotary_emb.reset_parameters()
|
| 750 |
+
for layer in self.model.layers:
|
| 751 |
+
layer.self_attn.rotary_emb.reset_parameters()
|
| 752 |
+
|
| 753 |
+
def get_input_embeddings(self):
|
| 754 |
+
return self.model.embed_tokens
|
| 755 |
+
|
| 756 |
+
def set_input_embeddings(self, value):
|
| 757 |
+
self.model.embed_tokens = value
|
| 758 |
+
|
| 759 |
+
def get_output_embeddings(self):
|
| 760 |
+
return self.lm_head
|
| 761 |
+
|
| 762 |
+
def set_output_embeddings(self, new_embeddings):
|
| 763 |
+
self.lm_head = new_embeddings
|
| 764 |
+
|
| 765 |
+
def set_decoder(self, decoder):
|
| 766 |
+
self.model = decoder
|
| 767 |
+
|
| 768 |
+
def get_decoder(self):
|
| 769 |
+
return self.model
|
| 770 |
+
|
| 771 |
+
def forward(
|
| 772 |
+
self,
|
| 773 |
+
input_ids: torch.LongTensor = None,
|
| 774 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 775 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 776 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 777 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 778 |
+
labels: Optional[torch.LongTensor] = None,
|
| 779 |
+
use_cache: Optional[bool] = None,
|
| 780 |
+
output_attentions: Optional[bool] = None,
|
| 781 |
+
output_hidden_states: Optional[bool] = None,
|
| 782 |
+
return_dict: Optional[bool] = None,
|
| 783 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 784 |
+
num_logits_to_keep: int = 0,
|
| 785 |
+
**loss_kwargs,
|
| 786 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
| 787 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 788 |
+
output_hidden_states = (
|
| 789 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 790 |
+
)
|
| 791 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 792 |
+
|
| 793 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 794 |
+
outputs = self.model(
|
| 795 |
+
input_ids=input_ids,
|
| 796 |
+
attention_mask=attention_mask,
|
| 797 |
+
position_ids=position_ids,
|
| 798 |
+
past_key_values=past_key_values,
|
| 799 |
+
inputs_embeds=inputs_embeds,
|
| 800 |
+
use_cache=use_cache,
|
| 801 |
+
output_attentions=output_attentions,
|
| 802 |
+
output_hidden_states=output_hidden_states,
|
| 803 |
+
return_dict=return_dict,
|
| 804 |
+
cache_position=cache_position,
|
| 805 |
+
)
|
| 806 |
+
|
| 807 |
+
hidden_states = outputs[0]
|
| 808 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 809 |
+
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
|
| 810 |
+
|
| 811 |
+
loss = None
|
| 812 |
+
if labels is not None:
|
| 813 |
+
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
|
| 814 |
+
|
| 815 |
+
if not return_dict:
|
| 816 |
+
output = (logits,) + outputs[1:]
|
| 817 |
+
return (loss,) + output if loss is not None else output
|
| 818 |
+
|
| 819 |
+
return MaskedLMOutput(
|
| 820 |
+
loss=loss,
|
| 821 |
+
logits=logits,
|
| 822 |
+
hidden_states=outputs.hidden_states,
|
| 823 |
+
attentions=outputs.attentions,
|
| 824 |
+
)
|