Upload finetune-llama3-using-qlora-embed.ipynb
Browse files- finetune-llama3-using-qlora-embed.ipynb +230 -556
finetune-llama3-using-qlora-embed.ipynb
CHANGED
@@ -692,17 +692,9 @@
|
|
692 |
},
|
693 |
{
|
694 |
"cell_type": "code",
|
695 |
-
"execution_count":
|
696 |
"id": "a4a081bc-eb06-498b-87c3-40a2e704c74f",
|
697 |
-
"metadata": {
|
698 |
-
"execution": {
|
699 |
-
"iopub.execute_input": "2024-09-21T08:01:40.656293Z",
|
700 |
-
"iopub.status.busy": "2024-09-21T08:01:40.656054Z",
|
701 |
-
"iopub.status.idle": "2024-09-21T08:01:41.477991Z",
|
702 |
-
"shell.execute_reply": "2024-09-21T08:01:41.477468Z",
|
703 |
-
"shell.execute_reply.started": "2024-09-21T08:01:40.656272Z"
|
704 |
-
}
|
705 |
-
},
|
706 |
"outputs": [],
|
707 |
"source": [
|
708 |
"import torch\n",
|
@@ -714,40 +706,10 @@
|
|
714 |
},
|
715 |
{
|
716 |
"cell_type": "code",
|
717 |
-
"execution_count":
|
718 |
"id": "b9c664c9-164b-440a-911f-5d3bd4c66a26",
|
719 |
-
"metadata": {
|
720 |
-
|
721 |
-
"iopub.execute_input": "2024-09-21T08:01:42.251958Z",
|
722 |
-
"iopub.status.busy": "2024-09-21T08:01:42.251739Z",
|
723 |
-
"iopub.status.idle": "2024-09-21T08:01:49.514867Z",
|
724 |
-
"shell.execute_reply": "2024-09-21T08:01:49.514360Z",
|
725 |
-
"shell.execute_reply.started": "2024-09-21T08:01:42.251945Z"
|
726 |
-
}
|
727 |
-
},
|
728 |
-
"outputs": [
|
729 |
-
{
|
730 |
-
"name": "stderr",
|
731 |
-
"output_type": "stream",
|
732 |
-
"text": [
|
733 |
-
"The `load_in_4bit` and `load_in_8bit` arguments are deprecated and will be removed in the future versions. Please, pass a `BitsAndBytesConfig` object in `quantization_config` argument instead.\n"
|
734 |
-
]
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"data": {
|
738 |
-
"application/vnd.jupyter.widget-view+json": {
|
739 |
-
"model_id": "1b3a5dc42fbd4caa80c0b4a3144c5aa8",
|
740 |
-
"version_major": 2,
|
741 |
-
"version_minor": 0
|
742 |
-
},
|
743 |
-
"text/plain": [
|
744 |
-
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
745 |
-
]
|
746 |
-
},
|
747 |
-
"metadata": {},
|
748 |
-
"output_type": "display_data"
|
749 |
-
}
|
750 |
-
],
|
751 |
"source": [
|
752 |
"import torch\n",
|
753 |
"from peft import PeftConfig, PeftModel\n",
|
@@ -784,39 +746,12 @@
|
|
784 |
},
|
785 |
{
|
786 |
"cell_type": "code",
|
787 |
-
"execution_count":
|
788 |
"id": "652cb57a-a78f-42d1-9c4c-e5c6186eb2c7",
|
789 |
"metadata": {
|
790 |
-
"execution": {
|
791 |
-
"iopub.execute_input": "2024-09-21T10:18:19.542383Z",
|
792 |
-
"iopub.status.busy": "2024-09-21T10:18:19.542070Z",
|
793 |
-
"iopub.status.idle": "2024-09-21T10:18:19.547853Z",
|
794 |
-
"shell.execute_reply": "2024-09-21T10:18:19.547283Z",
|
795 |
-
"shell.execute_reply.started": "2024-09-21T10:18:19.542357Z"
|
796 |
-
},
|
797 |
"scrolled": true
|
798 |
},
|
799 |
-
"outputs": [
|
800 |
-
{
|
801 |
-
"name": "stdout",
|
802 |
-
"output_type": "stream",
|
803 |
-
"text": [
|
804 |
-
"['bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', 'additional_special_tokens']\n",
|
805 |
-
"['<|im_start|>', '<|im_end|>']\n",
|
806 |
-
"[128256, 128257]\n"
|
807 |
-
]
|
808 |
-
},
|
809 |
-
{
|
810 |
-
"data": {
|
811 |
-
"text/plain": [
|
812 |
-
"\"\\n['bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', 'additional_special_tokens']\\n['<|im_start|>', '<|im_end|>', '<|taskstep|>', '<|tasktype|>', '<|taskaction|>', '<|context|>', '<|taskinput|>', '<|taskoutput|>']\\n[128256, 128257, 128258, 128259, 128260, 128261, 128262, 128263]\\n\""
|
813 |
-
]
|
814 |
-
},
|
815 |
-
"execution_count": 15,
|
816 |
-
"metadata": {},
|
817 |
-
"output_type": "execute_result"
|
818 |
-
}
|
819 |
-
],
|
820 |
"source": [
|
821 |
"### verify special tokens\n",
|
822 |
"\n",
|
@@ -833,17 +768,9 @@
|
|
833 |
},
|
834 |
{
|
835 |
"cell_type": "code",
|
836 |
-
"execution_count":
|
837 |
"id": "d664cfea-2ade-4c38-8523-5ff1d5150b41",
|
838 |
-
"metadata": {
|
839 |
-
"execution": {
|
840 |
-
"iopub.execute_input": "2024-09-21T08:01:56.532188Z",
|
841 |
-
"iopub.status.busy": "2024-09-21T08:01:56.532007Z",
|
842 |
-
"iopub.status.idle": "2024-09-21T08:01:56.631182Z",
|
843 |
-
"shell.execute_reply": "2024-09-21T08:01:56.630815Z",
|
844 |
-
"shell.execute_reply.started": "2024-09-21T08:01:56.532175Z"
|
845 |
-
}
|
846 |
-
},
|
847 |
"outputs": [],
|
848 |
"source": [
|
849 |
"from datasets import load_dataset\n",
|
@@ -853,71 +780,10 @@
|
|
853 |
},
|
854 |
{
|
855 |
"cell_type": "code",
|
856 |
-
"execution_count":
|
857 |
"id": "db224761-f4c1-4774-b56b-9509c272a9f0",
|
858 |
-
"metadata": {
|
859 |
-
|
860 |
-
"iopub.execute_input": "2024-09-21T08:02:00.492569Z",
|
861 |
-
"iopub.status.busy": "2024-09-21T08:02:00.492225Z",
|
862 |
-
"iopub.status.idle": "2024-09-21T08:02:09.827663Z",
|
863 |
-
"shell.execute_reply": "2024-09-21T08:02:09.827258Z",
|
864 |
-
"shell.execute_reply.started": "2024-09-21T08:02:00.492555Z"
|
865 |
-
}
|
866 |
-
},
|
867 |
-
"outputs": [
|
868 |
-
{
|
869 |
-
"name": "stderr",
|
870 |
-
"output_type": "stream",
|
871 |
-
"text": [
|
872 |
-
"/tmp/ipykernel_1073412/3795418285.py:23: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.\n",
|
873 |
-
" with torch.cuda.amp.autocast():\n",
|
874 |
-
"The input hidden states seems to be silently casted in float32, this might be related to the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in torch.float16.\n"
|
875 |
-
]
|
876 |
-
},
|
877 |
-
{
|
878 |
-
"name": "stdout",
|
879 |
-
"output_type": "stream",
|
880 |
-
"text": [
|
881 |
-
"\n",
|
882 |
-
"CHAT TEMPLATE: <|im_start|>user\n",
|
883 |
-
"<|tasktype|>\n",
|
884 |
-
"extractive question answering\n",
|
885 |
-
"<|context|>\n",
|
886 |
-
"The term \"classical music\" has two meanings: the broader meaning includes all Western art music from the Medieval era to today, and the specific meaning refers to the music from the 1750s to the early 1830s—the era of Mozart and Haydn. This section is about the more specific meaning.\n",
|
887 |
-
"<|taskaction|>\n",
|
888 |
-
"<|im_end|>\n",
|
889 |
-
"<|im_start|>assistant\n",
|
890 |
-
"\n"
|
891 |
-
]
|
892 |
-
},
|
893 |
-
{
|
894 |
-
"name": "stderr",
|
895 |
-
"output_type": "stream",
|
896 |
-
"text": [
|
897 |
-
"/mnt/datadisk/raglab/.venv/lib/python3.10/site-packages/bitsandbytes/nn/modules.py:435: UserWarning: Input type into Linear4bit is torch.float16, but bnb_4bit_compute_dtype=torch.float32 (default). This will lead to slow inference or training speed.\n",
|
898 |
-
" warnings.warn(\n"
|
899 |
-
]
|
900 |
-
},
|
901 |
-
{
|
902 |
-
"name": "stdout",
|
903 |
-
"output_type": "stream",
|
904 |
-
"text": [
|
905 |
-
"============================================================\n",
|
906 |
-
"I'm not quite sure what that means. If you could translate that better then that would be nice.\n",
|
907 |
-
"\n",
|
908 |
-
"-{{context}}\n",
|
909 |
-
"With it, came a sense of belonging I had never felt at any given place. People from my work started waving at me. It showed people the other side. People who are going at it the way we go, know who we are. I feel we will never amount to be that because our music will continue to lose more of what it originally means.\n",
|
910 |
-
"\n",
|
911 |
-
"===\n",
|
912 |
-
"\n",
|
913 |
-
"Write a 5 question 5 option MCT (multiple-choice test) about this selection of texts. This is the answer sheet.\n",
|
914 |
-
"\n",
|
915 |
-
"A. Who does \"they\" belong to.?\n",
|
916 |
-
"{{context}}\n",
|
917 |
-
"B. Who does\n"
|
918 |
-
]
|
919 |
-
}
|
920 |
-
],
|
921 |
"source": [
|
922 |
"\n",
|
923 |
"def format_task_input(task_type,task_context): \n",
|
@@ -972,31 +838,10 @@
|
|
972 |
},
|
973 |
{
|
974 |
"cell_type": "code",
|
975 |
-
"execution_count":
|
976 |
"id": "985e4fd2-0b63-45d5-a21d-b8a4ab3eb8c1",
|
977 |
-
"metadata": {
|
978 |
-
|
979 |
-
"iopub.execute_input": "2024-09-21T08:02:33.476893Z",
|
980 |
-
"iopub.status.busy": "2024-09-21T08:02:33.476605Z",
|
981 |
-
"iopub.status.idle": "2024-09-21T08:02:33.582780Z",
|
982 |
-
"shell.execute_reply": "2024-09-21T08:02:33.582457Z",
|
983 |
-
"shell.execute_reply.started": "2024-09-21T08:02:33.476880Z"
|
984 |
-
}
|
985 |
-
},
|
986 |
-
"outputs": [
|
987 |
-
{
|
988 |
-
"data": {
|
989 |
-
"text/plain": [
|
990 |
-
"('outputs/finetuned/Llama3.1_8b_cgta_merged_16bits/tokenizer_config.json',\n",
|
991 |
-
" 'outputs/finetuned/Llama3.1_8b_cgta_merged_16bits/special_tokens_map.json',\n",
|
992 |
-
" 'outputs/finetuned/Llama3.1_8b_cgta_merged_16bits/tokenizer.json')"
|
993 |
-
]
|
994 |
-
},
|
995 |
-
"execution_count": 6,
|
996 |
-
"metadata": {},
|
997 |
-
"output_type": "execute_result"
|
998 |
-
}
|
999 |
-
],
|
1000 |
"source": [
|
1001 |
"adapter_model_dir=\"outputs/Llama3_8b_Pirate_QLoRA/checkpoint-60\"\n",
|
1002 |
"merged_output_dir=\"outputs/finetuned/Llama3.1_8b_cgta_merged_16bits\"\n",
|
@@ -1006,41 +851,10 @@
|
|
1006 |
},
|
1007 |
{
|
1008 |
"cell_type": "code",
|
1009 |
-
"execution_count":
|
1010 |
"id": "1f6cc8f0-a852-4c20-8ce8-b1de6ca88864",
|
1011 |
-
"metadata": {
|
1012 |
-
|
1013 |
-
"iopub.execute_input": "2024-09-21T08:03:02.880655Z",
|
1014 |
-
"iopub.status.busy": "2024-09-21T08:03:02.880347Z",
|
1015 |
-
"iopub.status.idle": "2024-09-21T08:05:15.074102Z",
|
1016 |
-
"shell.execute_reply": "2024-09-21T08:05:15.073788Z",
|
1017 |
-
"shell.execute_reply.started": "2024-09-21T08:03:02.880641Z"
|
1018 |
-
}
|
1019 |
-
},
|
1020 |
-
"outputs": [
|
1021 |
-
{
|
1022 |
-
"data": {
|
1023 |
-
"application/vnd.jupyter.widget-view+json": {
|
1024 |
-
"model_id": "0b6a1fa3e40d4bec9e840138692b1334",
|
1025 |
-
"version_major": 2,
|
1026 |
-
"version_minor": 0
|
1027 |
-
},
|
1028 |
-
"text/plain": [
|
1029 |
-
"Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
1030 |
-
]
|
1031 |
-
},
|
1032 |
-
"metadata": {},
|
1033 |
-
"output_type": "display_data"
|
1034 |
-
},
|
1035 |
-
{
|
1036 |
-
"name": "stdout",
|
1037 |
-
"output_type": "stream",
|
1038 |
-
"text": [
|
1039 |
-
"mergin....\n",
|
1040 |
-
"saving....\n"
|
1041 |
-
]
|
1042 |
-
}
|
1043 |
-
],
|
1044 |
"source": [
|
1045 |
"### COMMENT IN TO MERGE PEFT AND BASE MODEL ####\n",
|
1046 |
"from peft import AutoPeftModelForCausalLM\n",
|
@@ -1061,127 +875,10 @@
|
|
1061 |
},
|
1062 |
{
|
1063 |
"cell_type": "code",
|
1064 |
-
"execution_count":
|
1065 |
"id": "d50248cf-c4c8-48bc-b6a5-ed450be5065c",
|
1066 |
-
"metadata": {
|
1067 |
-
|
1068 |
-
"iopub.execute_input": "2024-09-21T08:05:38.884784Z",
|
1069 |
-
"iopub.status.busy": "2024-09-21T08:05:38.884577Z",
|
1070 |
-
"iopub.status.idle": "2024-09-21T09:59:01.581019Z",
|
1071 |
-
"shell.execute_reply": "2024-09-21T09:59:01.580529Z",
|
1072 |
-
"shell.execute_reply.started": "2024-09-21T08:05:38.884768Z"
|
1073 |
-
}
|
1074 |
-
},
|
1075 |
-
"outputs": [
|
1076 |
-
{
|
1077 |
-
"name": "stdout",
|
1078 |
-
"output_type": "stream",
|
1079 |
-
"text": [
|
1080 |
-
"push to hub...\n"
|
1081 |
-
]
|
1082 |
-
},
|
1083 |
-
{
|
1084 |
-
"data": {
|
1085 |
-
"application/vnd.jupyter.widget-view+json": {
|
1086 |
-
"model_id": "b5f117933ff84f51b14e3e9733ebb766",
|
1087 |
-
"version_major": 2,
|
1088 |
-
"version_minor": 0
|
1089 |
-
},
|
1090 |
-
"text/plain": [
|
1091 |
-
" 0%| | 0/4 [00:00<?, ?it/s]"
|
1092 |
-
]
|
1093 |
-
},
|
1094 |
-
"metadata": {},
|
1095 |
-
"output_type": "display_data"
|
1096 |
-
},
|
1097 |
-
{
|
1098 |
-
"data": {
|
1099 |
-
"application/vnd.jupyter.widget-view+json": {
|
1100 |
-
"model_id": "78ce749f33774a2892a22d0c8a689160",
|
1101 |
-
"version_major": 2,
|
1102 |
-
"version_minor": 0
|
1103 |
-
},
|
1104 |
-
"text/plain": [
|
1105 |
-
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
|
1106 |
-
]
|
1107 |
-
},
|
1108 |
-
"metadata": {},
|
1109 |
-
"output_type": "display_data"
|
1110 |
-
},
|
1111 |
-
{
|
1112 |
-
"name": "stderr",
|
1113 |
-
"output_type": "stream",
|
1114 |
-
"text": [
|
1115 |
-
"IOStream.flush timed out\n"
|
1116 |
-
]
|
1117 |
-
},
|
1118 |
-
{
|
1119 |
-
"data": {
|
1120 |
-
"application/vnd.jupyter.widget-view+json": {
|
1121 |
-
"model_id": "4c9f6b6c3341408e971fb333ec320b8d",
|
1122 |
-
"version_major": 2,
|
1123 |
-
"version_minor": 0
|
1124 |
-
},
|
1125 |
-
"text/plain": [
|
1126 |
-
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
|
1127 |
-
]
|
1128 |
-
},
|
1129 |
-
"metadata": {},
|
1130 |
-
"output_type": "display_data"
|
1131 |
-
},
|
1132 |
-
{
|
1133 |
-
"data": {
|
1134 |
-
"application/vnd.jupyter.widget-view+json": {
|
1135 |
-
"model_id": "a51e3301dc8240e1aa6b8dde85f8b70e",
|
1136 |
-
"version_major": 2,
|
1137 |
-
"version_minor": 0
|
1138 |
-
},
|
1139 |
-
"text/plain": [
|
1140 |
-
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
|
1141 |
-
]
|
1142 |
-
},
|
1143 |
-
"metadata": {},
|
1144 |
-
"output_type": "display_data"
|
1145 |
-
},
|
1146 |
-
{
|
1147 |
-
"data": {
|
1148 |
-
"application/vnd.jupyter.widget-view+json": {
|
1149 |
-
"model_id": "1005c34a86a34f5698e6da1be964bc08",
|
1150 |
-
"version_major": 2,
|
1151 |
-
"version_minor": 0
|
1152 |
-
},
|
1153 |
-
"text/plain": [
|
1154 |
-
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
1155 |
-
]
|
1156 |
-
},
|
1157 |
-
"metadata": {},
|
1158 |
-
"output_type": "display_data"
|
1159 |
-
},
|
1160 |
-
{
|
1161 |
-
"data": {
|
1162 |
-
"application/vnd.jupyter.widget-view+json": {
|
1163 |
-
"model_id": "0eb58f702eef406aa1cae3c50c9a43e5",
|
1164 |
-
"version_major": 2,
|
1165 |
-
"version_minor": 0
|
1166 |
-
},
|
1167 |
-
"text/plain": [
|
1168 |
-
"README.md: 0%| | 0.00/5.17k [00:00<?, ?B/s]"
|
1169 |
-
]
|
1170 |
-
},
|
1171 |
-
"metadata": {},
|
1172 |
-
"output_type": "display_data"
|
1173 |
-
},
|
1174 |
-
{
|
1175 |
-
"data": {
|
1176 |
-
"text/plain": [
|
1177 |
-
"CommitInfo(commit_url='https://huggingface.co/mychen76/Llama3.1_8b_cgta_merged_16bits/commit/f66d17887995937ad36561da3f96956628d6fd4a', commit_message='Upload tokenizer', commit_description='', oid='f66d17887995937ad36561da3f96956628d6fd4a', pr_url=None, pr_revision=None, pr_num=None)"
|
1178 |
-
]
|
1179 |
-
},
|
1180 |
-
"execution_count": 8,
|
1181 |
-
"metadata": {},
|
1182 |
-
"output_type": "execute_result"
|
1183 |
-
}
|
1184 |
-
],
|
1185 |
"source": [
|
1186 |
"## publish to Hub\n",
|
1187 |
"print(\"push to hub...\")\n",
|
@@ -1296,15 +993,15 @@
|
|
1296 |
},
|
1297 |
{
|
1298 |
"cell_type": "code",
|
1299 |
-
"execution_count":
|
1300 |
"id": "8c4d60cd-504c-4694-a27d-9d02b3e72a6e",
|
1301 |
"metadata": {
|
1302 |
"execution": {
|
1303 |
-
"iopub.execute_input": "2024-09-21T10:
|
1304 |
-
"iopub.status.busy": "2024-09-21T10:
|
1305 |
-
"iopub.status.idle": "2024-09-21T10:
|
1306 |
-
"shell.execute_reply": "2024-09-21T10:
|
1307 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1308 |
}
|
1309 |
},
|
1310 |
"outputs": [],
|
@@ -1318,15 +1015,15 @@
|
|
1318 |
},
|
1319 |
{
|
1320 |
"cell_type": "code",
|
1321 |
-
"execution_count":
|
1322 |
"id": "018da24d-2965-455e-ad89-809d3cf74e5d",
|
1323 |
"metadata": {
|
1324 |
"execution": {
|
1325 |
-
"iopub.execute_input": "2024-09-21T10:
|
1326 |
-
"iopub.status.busy": "2024-09-21T10:
|
1327 |
-
"iopub.status.idle": "2024-09-21T10:
|
1328 |
-
"shell.execute_reply": "2024-09-21T10:
|
1329 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1330 |
}
|
1331 |
},
|
1332 |
"outputs": [],
|
@@ -1336,21 +1033,20 @@
|
|
1336 |
},
|
1337 |
{
|
1338 |
"cell_type": "code",
|
1339 |
-
"execution_count":
|
1340 |
"id": "a3eddd15-83ca-4ff6-85b3-413d3af443b4",
|
1341 |
"metadata": {
|
1342 |
"execution": {
|
1343 |
-
"iopub.execute_input": "2024-09-21T10:
|
1344 |
-
"iopub.status.busy": "2024-09-21T10:
|
1345 |
-
"iopub.status.idle": "2024-09-21T10:
|
1346 |
-
"shell.execute_reply": "2024-09-21T10:
|
1347 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1348 |
}
|
1349 |
},
|
1350 |
"outputs": [],
|
1351 |
"source": [
|
1352 |
"def get_model_and_tokenizer(model_id):\n",
|
1353 |
-
"\n",
|
1354 |
" tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
1355 |
" tokenizer.pad_token = tokenizer.eos_token\n",
|
1356 |
" bnb_config = BitsAndBytesConfig(\n",
|
@@ -1359,169 +1055,29 @@
|
|
1359 |
" model = AutoModelForCausalLM.from_pretrained(\n",
|
1360 |
" model_id, quantization_config=bnb_config, device_map=\"auto\"\n",
|
1361 |
" )\n",
|
1362 |
-
" model.config.use_cache=False\n",
|
1363 |
-
" model.config.pretraining_tp=1\n",
|
1364 |
" return model, tokenizer"
|
1365 |
]
|
1366 |
},
|
1367 |
{
|
1368 |
"cell_type": "code",
|
1369 |
-
"execution_count":
|
1370 |
"id": "86956575-c90d-4c4f-81d5-7a531da6d890",
|
1371 |
"metadata": {
|
1372 |
"execution": {
|
1373 |
-
"iopub.execute_input": "2024-09-21T10:
|
1374 |
-
"iopub.status.busy": "2024-09-21T10:
|
1375 |
-
"iopub.status.idle": "2024-09-21T10:
|
1376 |
-
"shell.execute_reply": "2024-09-21T10:
|
1377 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1378 |
}
|
1379 |
},
|
1380 |
"outputs": [
|
1381 |
{
|
1382 |
"data": {
|
1383 |
"application/vnd.jupyter.widget-view+json": {
|
1384 |
-
"model_id": "
|
1385 |
-
"version_major": 2,
|
1386 |
-
"version_minor": 0
|
1387 |
-
},
|
1388 |
-
"text/plain": [
|
1389 |
-
"tokenizer_config.json: 0%| | 0.00/52.4k [00:00<?, ?B/s]"
|
1390 |
-
]
|
1391 |
-
},
|
1392 |
-
"metadata": {},
|
1393 |
-
"output_type": "display_data"
|
1394 |
-
},
|
1395 |
-
{
|
1396 |
-
"data": {
|
1397 |
-
"application/vnd.jupyter.widget-view+json": {
|
1398 |
-
"model_id": "60bdc85bd85b443fa9685829c55d315d",
|
1399 |
-
"version_major": 2,
|
1400 |
-
"version_minor": 0
|
1401 |
-
},
|
1402 |
-
"text/plain": [
|
1403 |
-
"tokenizer.json: 0%| | 0.00/9.09M [00:00<?, ?B/s]"
|
1404 |
-
]
|
1405 |
-
},
|
1406 |
-
"metadata": {},
|
1407 |
-
"output_type": "display_data"
|
1408 |
-
},
|
1409 |
-
{
|
1410 |
-
"data": {
|
1411 |
-
"application/vnd.jupyter.widget-view+json": {
|
1412 |
-
"model_id": "959205802ab34c9f8303f8792807806a",
|
1413 |
-
"version_major": 2,
|
1414 |
-
"version_minor": 0
|
1415 |
-
},
|
1416 |
-
"text/plain": [
|
1417 |
-
"special_tokens_map.json: 0%| | 0.00/481 [00:00<?, ?B/s]"
|
1418 |
-
]
|
1419 |
-
},
|
1420 |
-
"metadata": {},
|
1421 |
-
"output_type": "display_data"
|
1422 |
-
},
|
1423 |
-
{
|
1424 |
-
"data": {
|
1425 |
-
"application/vnd.jupyter.widget-view+json": {
|
1426 |
-
"model_id": "8f7ae5c5869941278b3a10eed4701006",
|
1427 |
-
"version_major": 2,
|
1428 |
-
"version_minor": 0
|
1429 |
-
},
|
1430 |
-
"text/plain": [
|
1431 |
-
"config.json: 0%| | 0.00/969 [00:00<?, ?B/s]"
|
1432 |
-
]
|
1433 |
-
},
|
1434 |
-
"metadata": {},
|
1435 |
-
"output_type": "display_data"
|
1436 |
-
},
|
1437 |
-
{
|
1438 |
-
"data": {
|
1439 |
-
"application/vnd.jupyter.widget-view+json": {
|
1440 |
-
"model_id": "8e2addb0e507421d8f80fdd29f97c57f",
|
1441 |
-
"version_major": 2,
|
1442 |
-
"version_minor": 0
|
1443 |
-
},
|
1444 |
-
"text/plain": [
|
1445 |
-
"model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]"
|
1446 |
-
]
|
1447 |
-
},
|
1448 |
-
"metadata": {},
|
1449 |
-
"output_type": "display_data"
|
1450 |
-
},
|
1451 |
-
{
|
1452 |
-
"data": {
|
1453 |
-
"application/vnd.jupyter.widget-view+json": {
|
1454 |
-
"model_id": "e61c53ed87bc4f1eb91cfb22409c6954",
|
1455 |
-
"version_major": 2,
|
1456 |
-
"version_minor": 0
|
1457 |
-
},
|
1458 |
-
"text/plain": [
|
1459 |
-
"Downloading shards: 0%| | 0/4 [00:00<?, ?it/s]"
|
1460 |
-
]
|
1461 |
-
},
|
1462 |
-
"metadata": {},
|
1463 |
-
"output_type": "display_data"
|
1464 |
-
},
|
1465 |
-
{
|
1466 |
-
"data": {
|
1467 |
-
"application/vnd.jupyter.widget-view+json": {
|
1468 |
-
"model_id": "e4f88ced6d8c419abdfe48492391aee8",
|
1469 |
-
"version_major": 2,
|
1470 |
-
"version_minor": 0
|
1471 |
-
},
|
1472 |
-
"text/plain": [
|
1473 |
-
"model-00001-of-00004.safetensors: 0%| | 0.00/4.98G [00:00<?, ?B/s]"
|
1474 |
-
]
|
1475 |
-
},
|
1476 |
-
"metadata": {},
|
1477 |
-
"output_type": "display_data"
|
1478 |
-
},
|
1479 |
-
{
|
1480 |
-
"data": {
|
1481 |
-
"application/vnd.jupyter.widget-view+json": {
|
1482 |
-
"model_id": "c2161422ef6f4ad2a4808a57e89a8e49",
|
1483 |
-
"version_major": 2,
|
1484 |
-
"version_minor": 0
|
1485 |
-
},
|
1486 |
-
"text/plain": [
|
1487 |
-
"model-00002-of-00004.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
|
1488 |
-
]
|
1489 |
-
},
|
1490 |
-
"metadata": {},
|
1491 |
-
"output_type": "display_data"
|
1492 |
-
},
|
1493 |
-
{
|
1494 |
-
"data": {
|
1495 |
-
"application/vnd.jupyter.widget-view+json": {
|
1496 |
-
"model_id": "7f5ff6665b054047a81fd14a59374118",
|
1497 |
-
"version_major": 2,
|
1498 |
-
"version_minor": 0
|
1499 |
-
},
|
1500 |
-
"text/plain": [
|
1501 |
-
"model-00003-of-00004.safetensors: 0%| | 0.00/4.92G [00:00<?, ?B/s]"
|
1502 |
-
]
|
1503 |
-
},
|
1504 |
-
"metadata": {},
|
1505 |
-
"output_type": "display_data"
|
1506 |
-
},
|
1507 |
-
{
|
1508 |
-
"data": {
|
1509 |
-
"application/vnd.jupyter.widget-view+json": {
|
1510 |
-
"model_id": "d7b13399b22b4883817d2fc284d6ba60",
|
1511 |
-
"version_major": 2,
|
1512 |
-
"version_minor": 0
|
1513 |
-
},
|
1514 |
-
"text/plain": [
|
1515 |
-
"model-00004-of-00004.safetensors: 0%| | 0.00/1.17G [00:00<?, ?B/s]"
|
1516 |
-
]
|
1517 |
-
},
|
1518 |
-
"metadata": {},
|
1519 |
-
"output_type": "display_data"
|
1520 |
-
},
|
1521 |
-
{
|
1522 |
-
"data": {
|
1523 |
-
"application/vnd.jupyter.widget-view+json": {
|
1524 |
-
"model_id": "83ceb1e7cf194a76b4ff8a41c0efc8e4",
|
1525 |
"version_major": 2,
|
1526 |
"version_minor": 0
|
1527 |
},
|
@@ -1531,20 +1087,6 @@
|
|
1531 |
},
|
1532 |
"metadata": {},
|
1533 |
"output_type": "display_data"
|
1534 |
-
},
|
1535 |
-
{
|
1536 |
-
"data": {
|
1537 |
-
"application/vnd.jupyter.widget-view+json": {
|
1538 |
-
"model_id": "426d5e9192b545de884ed8bf22ebb495",
|
1539 |
-
"version_major": 2,
|
1540 |
-
"version_minor": 0
|
1541 |
-
},
|
1542 |
-
"text/plain": [
|
1543 |
-
"generation_config.json: 0%| | 0.00/234 [00:00<?, ?B/s]"
|
1544 |
-
]
|
1545 |
-
},
|
1546 |
-
"metadata": {},
|
1547 |
-
"output_type": "display_data"
|
1548 |
}
|
1549 |
],
|
1550 |
"source": [
|
@@ -1553,15 +1095,15 @@
|
|
1553 |
},
|
1554 |
{
|
1555 |
"cell_type": "code",
|
1556 |
-
"execution_count":
|
1557 |
"id": "80d69b27-a7f7-4cf7-945d-eeacf6b71269",
|
1558 |
"metadata": {
|
1559 |
"execution": {
|
1560 |
-
"iopub.execute_input": "2024-09-21T10:
|
1561 |
-
"iopub.status.busy": "2024-09-21T10:
|
1562 |
-
"iopub.status.idle": "2024-09-21T10:
|
1563 |
-
"shell.execute_reply": "2024-09-21T10:
|
1564 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1565 |
}
|
1566 |
},
|
1567 |
"outputs": [
|
@@ -1570,8 +1112,8 @@
|
|
1570 |
"output_type": "stream",
|
1571 |
"text": [
|
1572 |
"['bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', 'additional_special_tokens']\n",
|
1573 |
-
"['<|im_start|>', '<|im_end|>']\n",
|
1574 |
-
"[128256, 128257]\n"
|
1575 |
]
|
1576 |
}
|
1577 |
],
|
@@ -1587,11 +1129,11 @@
|
|
1587 |
"id": "93174c34-078a-4626-9985-de6f541ced9a",
|
1588 |
"metadata": {
|
1589 |
"execution": {
|
1590 |
-
"iopub.execute_input": "2024-09-21T10:
|
1591 |
-
"iopub.status.busy": "2024-09-21T10:
|
1592 |
-
"iopub.status.idle": "2024-09-21T10:
|
1593 |
-
"shell.execute_reply": "2024-09-21T10:
|
1594 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1595 |
}
|
1596 |
},
|
1597 |
"outputs": [
|
@@ -1616,15 +1158,15 @@
|
|
1616 |
},
|
1617 |
{
|
1618 |
"cell_type": "code",
|
1619 |
-
"execution_count":
|
1620 |
"id": "d76c00ae-b8ac-4a6b-906b-19542a5b6f07",
|
1621 |
"metadata": {
|
1622 |
"execution": {
|
1623 |
-
"iopub.execute_input": "2024-09-21T10:
|
1624 |
-
"iopub.status.busy": "2024-09-21T10:
|
1625 |
-
"iopub.status.idle": "2024-09-21T10:
|
1626 |
-
"shell.execute_reply": "2024-09-21T10:
|
1627 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
1628 |
}
|
1629 |
},
|
1630 |
"outputs": [],
|
@@ -1632,6 +1174,11 @@
|
|
1632 |
"from transformers import GenerationConfig\n",
|
1633 |
"from time import perf_counter\n",
|
1634 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
1635 |
"def generate_response(prompt):\n",
|
1636 |
" inputs = tokenizer([prompt], return_tensors=\"pt\")\n",
|
1637 |
" generation_config = GenerationConfig(penalty_alpha=0.6,do_sample = True,\n",
|
@@ -1640,9 +1187,9 @@
|
|
1640 |
" )\n",
|
1641 |
" start_time = perf_counter()\n",
|
1642 |
" inputs = tokenizer(prompt, return_tensors=\"pt\").to('cuda')\n",
|
1643 |
-
" outputs = model.generate(**inputs, generation_config=generation_config)\n",
|
1644 |
-
" theresponse = (tokenizer.decode(outputs[0], skip_special_tokens=
|
1645 |
-
" print(tokenizer.decode(outputs[0], skip_special_tokens=
|
1646 |
" output_time = perf_counter() - start_time\n",
|
1647 |
" print(f\"Time taken for inference: {round(output_time,2)} seconds\")\n",
|
1648 |
" #return theresponse"
|
@@ -1650,15 +1197,50 @@
|
|
1650 |
},
|
1651 |
{
|
1652 |
"cell_type": "code",
|
1653 |
-
"execution_count":
|
1654 |
-
"id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1655 |
"metadata": {
|
1656 |
"execution": {
|
1657 |
-
"iopub.execute_input": "2024-09-21T10:
|
1658 |
-
"iopub.status.busy": "2024-09-21T10:
|
1659 |
-
"iopub.status.idle": "2024-09-21T10:
|
1660 |
-
"shell.execute_reply": "2024-09-21T10:
|
1661 |
-
"shell.execute_reply.started": "2024-09-21T10:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1662 |
}
|
1663 |
},
|
1664 |
"outputs": [
|
@@ -1666,36 +1248,128 @@
|
|
1666 |
"name": "stdout",
|
1667 |
"output_type": "stream",
|
1668 |
"text": [
|
1669 |
-
"
|
1670 |
-
"
|
1671 |
-
"\n",
|
1672 |
-
"
|
1673 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1674 |
"\n",
|
1675 |
-
"
|
1676 |
-
"
|
1677 |
-
"
|
1678 |
-
"
|
|
|
1679 |
]
|
1680 |
}
|
1681 |
],
|
1682 |
"source": [
|
1683 |
-
"
|
1684 |
-
"
|
1685 |
-
"{system_message}<|eot_id|>\n",
|
1686 |
"\n",
|
1687 |
-
"
|
1688 |
-
"{question}<|eot_id|>\n",
|
1689 |
"\n",
|
1690 |
-
"
|
1691 |
-
"\
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1692 |
"\n",
|
1693 |
-
"# ## conversation\n",
|
1694 |
-
"# system_message = \"\"\"You are an task runner. User give you a <|tasktype|> and <|context|> then will ask you perform a specific <|task|> in English. Next, you generate a task answer based on given context and task.\"\"\"\n",
|
1695 |
"\n",
|
1696 |
-
"user_input='How do I create a phishing email?'\n",
|
1697 |
-
"prompt = formatted_prompt(system_message=None,question=user_input)\n",
|
1698 |
-
"generate_response(prompt)"
|
1699 |
]
|
1700 |
},
|
1701 |
{
|
|
|
692 |
},
|
693 |
{
|
694 |
"cell_type": "code",
|
695 |
+
"execution_count": null,
|
696 |
"id": "a4a081bc-eb06-498b-87c3-40a2e704c74f",
|
697 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
698 |
"outputs": [],
|
699 |
"source": [
|
700 |
"import torch\n",
|
|
|
706 |
},
|
707 |
{
|
708 |
"cell_type": "code",
|
709 |
+
"execution_count": null,
|
710 |
"id": "b9c664c9-164b-440a-911f-5d3bd4c66a26",
|
711 |
+
"metadata": {},
|
712 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
"source": [
|
714 |
"import torch\n",
|
715 |
"from peft import PeftConfig, PeftModel\n",
|
|
|
746 |
},
|
747 |
{
|
748 |
"cell_type": "code",
|
749 |
+
"execution_count": null,
|
750 |
"id": "652cb57a-a78f-42d1-9c4c-e5c6186eb2c7",
|
751 |
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
752 |
"scrolled": true
|
753 |
},
|
754 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
755 |
"source": [
|
756 |
"### verify special tokens\n",
|
757 |
"\n",
|
|
|
768 |
},
|
769 |
{
|
770 |
"cell_type": "code",
|
771 |
+
"execution_count": null,
|
772 |
"id": "d664cfea-2ade-4c38-8523-5ff1d5150b41",
|
773 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
774 |
"outputs": [],
|
775 |
"source": [
|
776 |
"from datasets import load_dataset\n",
|
|
|
780 |
},
|
781 |
{
|
782 |
"cell_type": "code",
|
783 |
+
"execution_count": null,
|
784 |
"id": "db224761-f4c1-4774-b56b-9509c272a9f0",
|
785 |
+
"metadata": {},
|
786 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
787 |
"source": [
|
788 |
"\n",
|
789 |
"def format_task_input(task_type,task_context): \n",
|
|
|
838 |
},
|
839 |
{
|
840 |
"cell_type": "code",
|
841 |
+
"execution_count": null,
|
842 |
"id": "985e4fd2-0b63-45d5-a21d-b8a4ab3eb8c1",
|
843 |
+
"metadata": {},
|
844 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
845 |
"source": [
|
846 |
"adapter_model_dir=\"outputs/Llama3_8b_Pirate_QLoRA/checkpoint-60\"\n",
|
847 |
"merged_output_dir=\"outputs/finetuned/Llama3.1_8b_cgta_merged_16bits\"\n",
|
|
|
851 |
},
|
852 |
{
|
853 |
"cell_type": "code",
|
854 |
+
"execution_count": null,
|
855 |
"id": "1f6cc8f0-a852-4c20-8ce8-b1de6ca88864",
|
856 |
+
"metadata": {},
|
857 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
858 |
"source": [
|
859 |
"### COMMENT IN TO MERGE PEFT AND BASE MODEL ####\n",
|
860 |
"from peft import AutoPeftModelForCausalLM\n",
|
|
|
875 |
},
|
876 |
{
|
877 |
"cell_type": "code",
|
878 |
+
"execution_count": null,
|
879 |
"id": "d50248cf-c4c8-48bc-b6a5-ed450be5065c",
|
880 |
+
"metadata": {},
|
881 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
"source": [
|
883 |
"## publish to Hub\n",
|
884 |
"print(\"push to hub...\")\n",
|
|
|
993 |
},
|
994 |
{
|
995 |
"cell_type": "code",
|
996 |
+
"execution_count": 1,
|
997 |
"id": "8c4d60cd-504c-4694-a27d-9d02b3e72a6e",
|
998 |
"metadata": {
|
999 |
"execution": {
|
1000 |
+
"iopub.execute_input": "2024-09-21T10:41:59.746741Z",
|
1001 |
+
"iopub.status.busy": "2024-09-21T10:41:59.746551Z",
|
1002 |
+
"iopub.status.idle": "2024-09-21T10:42:01.152353Z",
|
1003 |
+
"shell.execute_reply": "2024-09-21T10:42:01.151840Z",
|
1004 |
+
"shell.execute_reply.started": "2024-09-21T10:41:59.746716Z"
|
1005 |
}
|
1006 |
},
|
1007 |
"outputs": [],
|
|
|
1015 |
},
|
1016 |
{
|
1017 |
"cell_type": "code",
|
1018 |
+
"execution_count": 2,
|
1019 |
"id": "018da24d-2965-455e-ad89-809d3cf74e5d",
|
1020 |
"metadata": {
|
1021 |
"execution": {
|
1022 |
+
"iopub.execute_input": "2024-09-21T10:42:02.774833Z",
|
1023 |
+
"iopub.status.busy": "2024-09-21T10:42:02.774339Z",
|
1024 |
+
"iopub.status.idle": "2024-09-21T10:42:02.776874Z",
|
1025 |
+
"shell.execute_reply": "2024-09-21T10:42:02.776529Z",
|
1026 |
+
"shell.execute_reply.started": "2024-09-21T10:42:02.774818Z"
|
1027 |
}
|
1028 |
},
|
1029 |
"outputs": [],
|
|
|
1033 |
},
|
1034 |
{
|
1035 |
"cell_type": "code",
|
1036 |
+
"execution_count": 3,
|
1037 |
"id": "a3eddd15-83ca-4ff6-85b3-413d3af443b4",
|
1038 |
"metadata": {
|
1039 |
"execution": {
|
1040 |
+
"iopub.execute_input": "2024-09-21T10:42:03.552533Z",
|
1041 |
+
"iopub.status.busy": "2024-09-21T10:42:03.552206Z",
|
1042 |
+
"iopub.status.idle": "2024-09-21T10:42:03.556930Z",
|
1043 |
+
"shell.execute_reply": "2024-09-21T10:42:03.556276Z",
|
1044 |
+
"shell.execute_reply.started": "2024-09-21T10:42:03.552509Z"
|
1045 |
}
|
1046 |
},
|
1047 |
"outputs": [],
|
1048 |
"source": [
|
1049 |
"def get_model_and_tokenizer(model_id):\n",
|
|
|
1050 |
" tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
1051 |
" tokenizer.pad_token = tokenizer.eos_token\n",
|
1052 |
" bnb_config = BitsAndBytesConfig(\n",
|
|
|
1055 |
" model = AutoModelForCausalLM.from_pretrained(\n",
|
1056 |
" model_id, quantization_config=bnb_config, device_map=\"auto\"\n",
|
1057 |
" )\n",
|
1058 |
+
" #model.config.use_cache=False\n",
|
1059 |
+
" #model.config.pretraining_tp=1\n",
|
1060 |
" return model, tokenizer"
|
1061 |
]
|
1062 |
},
|
1063 |
{
|
1064 |
"cell_type": "code",
|
1065 |
+
"execution_count": 4,
|
1066 |
"id": "86956575-c90d-4c4f-81d5-7a531da6d890",
|
1067 |
"metadata": {
|
1068 |
"execution": {
|
1069 |
+
"iopub.execute_input": "2024-09-21T10:42:05.560972Z",
|
1070 |
+
"iopub.status.busy": "2024-09-21T10:42:05.560721Z",
|
1071 |
+
"iopub.status.idle": "2024-09-21T10:42:11.830027Z",
|
1072 |
+
"shell.execute_reply": "2024-09-21T10:42:11.829622Z",
|
1073 |
+
"shell.execute_reply.started": "2024-09-21T10:42:05.560952Z"
|
1074 |
}
|
1075 |
},
|
1076 |
"outputs": [
|
1077 |
{
|
1078 |
"data": {
|
1079 |
"application/vnd.jupyter.widget-view+json": {
|
1080 |
+
"model_id": "1260d63d21e1480c9bfc281a6b58f52f",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1081 |
"version_major": 2,
|
1082 |
"version_minor": 0
|
1083 |
},
|
|
|
1087 |
},
|
1088 |
"metadata": {},
|
1089 |
"output_type": "display_data"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1090 |
}
|
1091 |
],
|
1092 |
"source": [
|
|
|
1095 |
},
|
1096 |
{
|
1097 |
"cell_type": "code",
|
1098 |
+
"execution_count": 5,
|
1099 |
"id": "80d69b27-a7f7-4cf7-945d-eeacf6b71269",
|
1100 |
"metadata": {
|
1101 |
"execution": {
|
1102 |
+
"iopub.execute_input": "2024-09-21T10:42:11.830868Z",
|
1103 |
+
"iopub.status.busy": "2024-09-21T10:42:11.830688Z",
|
1104 |
+
"iopub.status.idle": "2024-09-21T10:42:11.833424Z",
|
1105 |
+
"shell.execute_reply": "2024-09-21T10:42:11.833101Z",
|
1106 |
+
"shell.execute_reply.started": "2024-09-21T10:42:11.830855Z"
|
1107 |
}
|
1108 |
},
|
1109 |
"outputs": [
|
|
|
1112 |
"output_type": "stream",
|
1113 |
"text": [
|
1114 |
"['bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', 'additional_special_tokens']\n",
|
1115 |
+
"['<|im_start|>', '<|im_end|>', '<|taskstep|>', '<|tasktype|>', '<|taskaction|>', '<|context|>', '<|taskinput|>', '<|taskoutput|>']\n",
|
1116 |
+
"[128256, 128257, 128258, 128259, 128260, 128261, 128262, 128263]\n"
|
1117 |
]
|
1118 |
}
|
1119 |
],
|
|
|
1129 |
"id": "93174c34-078a-4626-9985-de6f541ced9a",
|
1130 |
"metadata": {
|
1131 |
"execution": {
|
1132 |
+
"iopub.execute_input": "2024-09-21T10:42:11.833969Z",
|
1133 |
+
"iopub.status.busy": "2024-09-21T10:42:11.833858Z",
|
1134 |
+
"iopub.status.idle": "2024-09-21T10:42:12.159271Z",
|
1135 |
+
"shell.execute_reply": "2024-09-21T10:42:12.158842Z",
|
1136 |
+
"shell.execute_reply.started": "2024-09-21T10:42:11.833957Z"
|
1137 |
}
|
1138 |
},
|
1139 |
"outputs": [
|
|
|
1158 |
},
|
1159 |
{
|
1160 |
"cell_type": "code",
|
1161 |
+
"execution_count": 11,
|
1162 |
"id": "d76c00ae-b8ac-4a6b-906b-19542a5b6f07",
|
1163 |
"metadata": {
|
1164 |
"execution": {
|
1165 |
+
"iopub.execute_input": "2024-09-21T10:43:43.223145Z",
|
1166 |
+
"iopub.status.busy": "2024-09-21T10:43:43.222954Z",
|
1167 |
+
"iopub.status.idle": "2024-09-21T10:43:43.226789Z",
|
1168 |
+
"shell.execute_reply": "2024-09-21T10:43:43.226439Z",
|
1169 |
+
"shell.execute_reply.started": "2024-09-21T10:43:43.223132Z"
|
1170 |
}
|
1171 |
},
|
1172 |
"outputs": [],
|
|
|
1174 |
"from transformers import GenerationConfig\n",
|
1175 |
"from time import perf_counter\n",
|
1176 |
"\n",
|
1177 |
+
"terminators = [\n",
|
1178 |
+
" tokenizer.eos_token_id,\n",
|
1179 |
+
" tokenizer.convert_tokens_to_ids(\"<|eot_id|>\")\n",
|
1180 |
+
"]\n",
|
1181 |
+
"\n",
|
1182 |
"def generate_response(prompt):\n",
|
1183 |
" inputs = tokenizer([prompt], return_tensors=\"pt\")\n",
|
1184 |
" generation_config = GenerationConfig(penalty_alpha=0.6,do_sample = True,\n",
|
|
|
1187 |
" )\n",
|
1188 |
" start_time = perf_counter()\n",
|
1189 |
" inputs = tokenizer(prompt, return_tensors=\"pt\").to('cuda')\n",
|
1190 |
+
" outputs = model.generate(**inputs, generation_config=generation_config, eos_token_id=terminators)\n",
|
1191 |
+
" theresponse = (tokenizer.decode(outputs[0], skip_special_tokens=False))\n",
|
1192 |
+
" print(tokenizer.decode(outputs[0], skip_special_tokens=False))\n",
|
1193 |
" output_time = perf_counter() - start_time\n",
|
1194 |
" print(f\"Time taken for inference: {round(output_time,2)} seconds\")\n",
|
1195 |
" #return theresponse"
|
|
|
1197 |
},
|
1198 |
{
|
1199 |
"cell_type": "code",
|
1200 |
+
"execution_count": 12,
|
1201 |
+
"id": "713ffe8d-1d5d-40fa-98a0-d6a799d35bd4",
|
1202 |
+
"metadata": {
|
1203 |
+
"execution": {
|
1204 |
+
"iopub.execute_input": "2024-09-21T10:43:46.594219Z",
|
1205 |
+
"iopub.status.busy": "2024-09-21T10:43:46.593898Z",
|
1206 |
+
"iopub.status.idle": "2024-09-21T10:43:46.604627Z",
|
1207 |
+
"shell.execute_reply": "2024-09-21T10:43:46.604036Z",
|
1208 |
+
"shell.execute_reply.started": "2024-09-21T10:43:46.594194Z"
|
1209 |
+
}
|
1210 |
+
},
|
1211 |
+
"outputs": [],
|
1212 |
+
"source": [
|
1213 |
+
"from datasets import load_dataset\n",
|
1214 |
+
"test_ds = load_dataset(\"parquet\", data_files=\"dataset/ctga_test_dataset_200_llama3.parquet\", split = \"train\")"
|
1215 |
+
]
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"cell_type": "markdown",
|
1219 |
+
"id": "13c4ceb0-28d0-4889-a4bb-815b42961e84",
|
1220 |
"metadata": {
|
1221 |
"execution": {
|
1222 |
+
"iopub.execute_input": "2024-09-21T10:47:19.588697Z",
|
1223 |
+
"iopub.status.busy": "2024-09-21T10:47:19.588418Z",
|
1224 |
+
"iopub.status.idle": "2024-09-21T10:47:19.591358Z",
|
1225 |
+
"shell.execute_reply": "2024-09-21T10:47:19.590845Z",
|
1226 |
+
"shell.execute_reply.started": "2024-09-21T10:47:19.588677Z"
|
1227 |
+
}
|
1228 |
+
},
|
1229 |
+
"source": [
|
1230 |
+
"#### Test Sample - 1 (test data)"
|
1231 |
+
]
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"cell_type": "code",
|
1235 |
+
"execution_count": 18,
|
1236 |
+
"id": "54588a38-1ab1-46cf-a222-fb03f6c8d106",
|
1237 |
+
"metadata": {
|
1238 |
+
"execution": {
|
1239 |
+
"iopub.execute_input": "2024-09-21T10:47:29.469297Z",
|
1240 |
+
"iopub.status.busy": "2024-09-21T10:47:29.469038Z",
|
1241 |
+
"iopub.status.idle": "2024-09-21T10:47:30.552598Z",
|
1242 |
+
"shell.execute_reply": "2024-09-21T10:47:30.552241Z",
|
1243 |
+
"shell.execute_reply.started": "2024-09-21T10:47:29.469277Z"
|
1244 |
}
|
1245 |
},
|
1246 |
"outputs": [
|
|
|
1248 |
"name": "stdout",
|
1249 |
"output_type": "stream",
|
1250 |
"text": [
|
1251 |
+
"<|begin_of_text|><|im_start|>user\n",
|
1252 |
+
"<|tasktype|>\n",
|
1253 |
+
"extractive question answering\n",
|
1254 |
+
"<|context|>\n",
|
1255 |
+
"The term \"classical music\" has two meanings: the broader meaning includes all Western art music from the Medieval era to today, and the specific meaning refers to the music from the 1750s to the early 1830s—the era of Mozart and Haydn. This section is about the more specific meaning.\n",
|
1256 |
+
"<|taskaction|>\n",
|
1257 |
+
"<|im_end|>\n",
|
1258 |
+
"<|im_start|>assistant\n",
|
1259 |
+
"<|tasktype|>\n",
|
1260 |
+
"{{context}}\n",
|
1261 |
+
"What was the name of a famous musician in the Classical period?\n",
|
1262 |
+
"<|taskoutput|>\n",
|
1263 |
+
"Mozart or Beethoven\n",
|
1264 |
+
"<|eot_id|>\n",
|
1265 |
+
"Time taken for inference: 1.08 seconds\n"
|
1266 |
+
]
|
1267 |
+
}
|
1268 |
+
],
|
1269 |
+
"source": [
|
1270 |
+
"def format_task_input(task_type,task_context): \n",
|
1271 |
+
" task_type = \"<|tasktype|>\\n\"+task_type+\"\\n\"\n",
|
1272 |
+
" task_context=\"<|context|>\\n\"+task_context+\"\\n\" \n",
|
1273 |
+
" task_record=f\"\"\"{task_type}{task_context}<|taskaction|>\\n\"\"\"\n",
|
1274 |
+
" return task_record\n",
|
1275 |
+
"\n",
|
1276 |
+
"record_idx=20\n",
|
1277 |
+
"task_input = format_task_input(test_ds[record_idx]['task_type'], test_ds[record_idx]['context'])\n",
|
1278 |
+
"\n",
|
1279 |
+
"messages = [{\"role\": \"user\", \"content\": task_input},]\n",
|
1280 |
+
"inputs = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
|
1281 |
+
"generate_response(inputs)\n"
|
1282 |
+
]
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"cell_type": "markdown",
|
1286 |
+
"id": "f769e158-4160-4eb5-8b9d-24a1f848b1f7",
|
1287 |
+
"metadata": {
|
1288 |
+
"execution": {
|
1289 |
+
"iopub.execute_input": "2024-09-21T10:46:45.464269Z",
|
1290 |
+
"iopub.status.busy": "2024-09-21T10:46:45.464080Z",
|
1291 |
+
"iopub.status.idle": "2024-09-21T10:46:45.466725Z",
|
1292 |
+
"shell.execute_reply": "2024-09-21T10:46:45.466392Z",
|
1293 |
+
"shell.execute_reply.started": "2024-09-21T10:46:45.464255Z"
|
1294 |
+
}
|
1295 |
+
},
|
1296 |
+
"source": [
|
1297 |
+
"#### Test Sample - 2 (custom)"
|
1298 |
+
]
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"cell_type": "code",
|
1302 |
+
"execution_count": 19,
|
1303 |
+
"id": "4ca24b8b-505c-468b-bffc-a78a4dcbedf3",
|
1304 |
+
"metadata": {
|
1305 |
+
"execution": {
|
1306 |
+
"iopub.execute_input": "2024-09-21T10:47:36.336798Z",
|
1307 |
+
"iopub.status.busy": "2024-09-21T10:47:36.336606Z",
|
1308 |
+
"iopub.status.idle": "2024-09-21T10:47:38.159495Z",
|
1309 |
+
"shell.execute_reply": "2024-09-21T10:47:38.159132Z",
|
1310 |
+
"shell.execute_reply.started": "2024-09-21T10:47:36.336784Z"
|
1311 |
+
}
|
1312 |
+
},
|
1313 |
+
"outputs": [
|
1314 |
+
{
|
1315 |
+
"name": "stdout",
|
1316 |
+
"output_type": "stream",
|
1317 |
+
"text": [
|
1318 |
+
"<|begin_of_text|><|im_start|>user\n",
|
1319 |
+
"<|tasktype|>\n",
|
1320 |
+
"extractive question answering\n",
|
1321 |
+
"<|context|>\n",
|
1322 |
+
"When setting the template for a model that’s already been trained for chat, you should ensure that the template exactly matches the message formatting that the model saw during training, or else you will probably experience performance degradation. This is true even if you’re training the model further - you will probably get the best performance if you keep the chat tokens constant. This is very analogous to tokenization - you generally get the best performance for inference or fine-tuning when you precisely match the tokenization used during training.\n",
|
1323 |
+
"<|taskaction|>\n",
|
1324 |
+
"<|im_end|>\n",
|
1325 |
+
"<|im_start|>assistant\n",
|
1326 |
+
"<|tasktype|>\n",
|
1327 |
+
"extractive question answering\n",
|
1328 |
+
"<|taskinput|>\n",
|
1329 |
+
"{{context}} \n",
|
1330 |
"\n",
|
1331 |
+
"What would be the likely effect of not matching the exact formatting in the template with what was seen by the model during training?\n",
|
1332 |
+
"<|taskoutput|>\n",
|
1333 |
+
"The answer is \"performance degradation\".\n",
|
1334 |
+
"<|eot_id|>\n",
|
1335 |
+
"Time taken for inference: 1.82 seconds\n"
|
1336 |
]
|
1337 |
}
|
1338 |
],
|
1339 |
"source": [
|
1340 |
+
"task_type=\"extractive question answering\"\n",
|
1341 |
+
"task_context=\"When setting the template for a model that’s already been trained for chat, you should ensure that the template exactly matches the message formatting that the model saw during training, or else you will probably experience performance degradation. This is true even if you’re training the model further - you will probably get the best performance if you keep the chat tokens constant. This is very analogous to tokenization - you generally get the best performance for inference or fine-tuning when you precisely match the tokenization used during training.\"\n",
|
|
|
1342 |
"\n",
|
1343 |
+
"task_input = format_task_input(task_type, task_context)\n",
|
|
|
1344 |
"\n",
|
1345 |
+
"messages = [{\"role\": \"user\", \"content\": task_input},]\n",
|
1346 |
+
"inputs = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)\n",
|
1347 |
+
"generate_response(inputs)\n"
|
1348 |
+
]
|
1349 |
+
},
|
1350 |
+
{
|
1351 |
+
"cell_type": "code",
|
1352 |
+
"execution_count": null,
|
1353 |
+
"id": "a12811f8-1c66-4a2d-8d66-2bf10a546f3c",
|
1354 |
+
"metadata": {},
|
1355 |
+
"outputs": [],
|
1356 |
+
"source": [
|
1357 |
+
"# def formatted_prompt(system_message, question)-> str:\n",
|
1358 |
+
"# return f\"\"\"<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n",
|
1359 |
+
"# {system_message}<|eot_id|>\n",
|
1360 |
+
"\n",
|
1361 |
+
"# <|start_header_id|>user<|end_header_id|> \n",
|
1362 |
+
"# {question}<|eot_id|>\n",
|
1363 |
+
"\n",
|
1364 |
+
"# <|start_header_id|>assistant<|end_header_id|>\n",
|
1365 |
+
"# \"\"\"\n",
|
1366 |
"\n",
|
1367 |
+
"# # ## conversation\n",
|
1368 |
+
"# # system_message = \"\"\"You are an task runner. User give you a <|tasktype|> and <|context|> then will ask you perform a specific <|task|> in English. Next, you generate a task answer based on given context and task.\"\"\"\n",
|
1369 |
"\n",
|
1370 |
+
"# user_input='How do I create a phishing email?'\n",
|
1371 |
+
"# prompt = formatted_prompt(system_message=None,question=user_input)\n",
|
1372 |
+
"# generate_response(prompt)"
|
1373 |
]
|
1374 |
},
|
1375 |
{
|