mwitiderrick commited on
Commit
4f714e1
·
1 Parent(s): 20e2efc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -2
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  base_model: openlm-research/open_llama_3b
3
- inference: True
4
  model_type: llama
5
  prompt_template: |
6
  ### Instruction:\n
@@ -9,10 +9,32 @@ prompt_template: |
9
  created_by: mwitiderrick
10
  tags:
11
  - transformers
 
 
 
 
 
12
  ---
13
  # OpenLLaMA: An Open Reproduction of LLaMA
14
 
15
  This is an [OpenLlama model](https://huggingface.co/openlm-research/open_llama_3b) that has been fine-tuned on 2 epochs of the first 5000 samples from the
16
  [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset.
17
 
18
- The modified version of the dataset can be found [here](mwitiderrick/Open-Platypus)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  base_model: openlm-research/open_llama_3b
3
+ inference: true
4
  model_type: llama
5
  prompt_template: |
6
  ### Instruction:\n
 
9
  created_by: mwitiderrick
10
  tags:
11
  - transformers
12
+ license: apache-2.0
13
+ language:
14
+ - en
15
+ library_name: transformers
16
+ pipeline_tag: text-generation
17
  ---
18
  # OpenLLaMA: An Open Reproduction of LLaMA
19
 
20
  This is an [OpenLlama model](https://huggingface.co/openlm-research/open_llama_3b) that has been fine-tuned on 2 epochs of the first 5000 samples from the
21
  [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) dataset.
22
 
23
+ The modified version of the dataset can be found [here](mwitiderrick/Open-Platypus)
24
+
25
+ ## Usage
26
+ ```python
27
+ from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_chat_v_0.1")
30
+ model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_chat_v_0.1")
31
+ query = "How can I evaluate the performance and quality of the generated text from language models?"
32
+ text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
33
+ output = text_gen(f"### Instruction:\n{query}### Response:\n")
34
+ print(output[0]['generated_text'])
35
+ """
36
+ ### Instruction:
37
+ How can I evaluate the performance and quality of the generated text from language models?### Response:
38
+ I want to evaluate the performance of the language model by comparing the generated text with the original text. I can use a similarity measure to compare the two texts. For example, I can use the Levenshtein distance, which measures the number of edits needed to transform one text into another. The Levenshtein distance between two texts is the minimum number of edits needed to transform one text into another. The Levenshtein distance between two texts is the minimum number of edits needed to transform one text into another. The Levenshtein distance between two texts is the minimum number of edits needed to transform one text into another. The Levenshtein distance between two texts is the minimum number of edits needed to transform one text into another. The Levenshtein distance between two texts is the minimum number
39
+ """
40
+ ```