metadata
language:
- hi
license: apache-2.0
base_model: openai/whisper-medium
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small Korea
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_17_0
config: ko
split: None
args: 'config: hi, split: test'
metrics:
- name: Wer
type: wer
value: 26.967150496562258
Whisper Small Korea
This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4319
- Wer: 26.9672
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0026 | 1.1111 | 50 | 0.3466 | 26.0886 |
0.0013 | 2.2222 | 100 | 0.3569 | 25.8212 |
0.0025 | 3.3333 | 150 | 0.3672 | 25.2865 |
0.003 | 4.4444 | 200 | 0.3578 | 25.5157 |
0.0091 | 5.5556 | 250 | 0.3599 | 25.3629 |
0.0072 | 6.6667 | 300 | 0.3682 | 25.9740 |
0.0054 | 7.7778 | 350 | 0.3785 | 26.8526 |
0.0093 | 8.8889 | 400 | 0.3764 | 27.1581 |
0.013 | 10.0 | 450 | 0.3886 | 28.5332 |
0.0146 | 11.1111 | 500 | 0.3900 | 27.5401 |
0.0128 | 12.2222 | 550 | 0.3917 | 27.3491 |
0.0054 | 13.3333 | 600 | 0.3926 | 26.5852 |
0.0029 | 14.4444 | 650 | 0.4281 | 28.4186 |
0.0062 | 15.5556 | 700 | 0.3957 | 27.5401 |
0.0062 | 16.6667 | 750 | 0.4080 | 27.7693 |
0.0023 | 17.7778 | 800 | 0.4151 | 27.4637 |
0.0034 | 18.8889 | 850 | 0.4153 | 28.2659 |
0.0009 | 20.0 | 900 | 0.4133 | 27.0053 |
0.0003 | 21.1111 | 950 | 0.4192 | 26.9672 |
0.0003 | 22.2222 | 1000 | 0.4223 | 26.9290 |
0.0002 | 23.3333 | 1050 | 0.4247 | 27.0053 |
0.0002 | 24.4444 | 1100 | 0.4266 | 26.9672 |
0.0002 | 25.5556 | 1150 | 0.4279 | 27.0817 |
0.0002 | 26.6667 | 1200 | 0.4290 | 27.0053 |
0.0002 | 27.7778 | 1250 | 0.4299 | 26.9672 |
0.0002 | 28.8889 | 1300 | 0.4306 | 26.9672 |
0.0002 | 30.0 | 1350 | 0.4312 | 27.0053 |
0.0002 | 31.1111 | 1400 | 0.4316 | 26.9672 |
0.0002 | 32.2222 | 1450 | 0.4318 | 26.9672 |
0.0002 | 33.3333 | 1500 | 0.4319 | 26.9672 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1