{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1818d34ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1818d34f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1818d35000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1818d35090>", "_build": "<function ActorCriticPolicy._build at 0x7f1818d35120>", "forward": "<function ActorCriticPolicy.forward at 0x7f1818d351b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1818d35240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1818d352d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1818d35360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1818d353f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1818d35480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1818d35510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1818d26980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686855136171998882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1k7t7spm6O0DkuLfayrN5fkW6p9IDOAAAgD8AAIA/TaxpvSSfWjzmWSk9d5SsvodRBb17kWE9AAAAAAAAAACa4aM7zxUDvHirEr30RAY9STtJPRa+DzoAAIA/AACAPxp6TT2Hy7s+ZVYbvHtYM7+IPRQ+y907vQAAAAAAAAAAAMBDO78OtT9O5Jo+jn4jPg5hYrtdV4y9AAAAAAAAAADa4r+9AQlSPmYxWjuAkwi/LkAFvVTWIDoAAAAAAAAAAGZsqr2NbRc+xwInPlBK1L4GgiI9drW/PAAAAAAAAAAAZtNpvfacV7qW+Za1hfygsAChaLoSN7M0AACAPwAAgD+aps28w/VOui7bxjacW4oxjS0uuzKx7LUAAIA/AACAPzOtQrwjAkI/moSlvXcSTL/Lbzw97OOjvAAAAAAAAAAAbUkSvl+xoz4Fkhg+dxANv+9Mfr1y7+c9AAAAAAAAAADgEG8+A/1kP8s85TzuQxK/lUn2PuaSq70AAAAAAAAAAADMtrtIAdS4IIl0Os3wsDIfwU67YKaTuQAAgD8AAIA/ik6FvnI2Lz8IP1k9gTERv0cC9L4lO3s+AAAAAAAAAADm0B49QACkP10VzT55ujq/arm4PDcsRj4AAAAAAAAAAOZn4r1PeaU/p8opv/VZCb8mZZ69hhbBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAobE9+w1SMAWyUS72MAXSUR0Clm7sqBmPHdX2UKGgGR0Bzf032mHgxaAdLyGgIR0Clm+UdzXBhdX2UKGgGR0ByXSx/ustDaAdL1GgIR0Clm/W4Vh1DdX2UKGgGR0BzbHoC+10DaAdL1WgIR0ClnAn2IwdsdX2UKGgGR0BySkWWQfZFaAdLvmgIR0ClnBlrEcbSdX2UKGgGR0By0OY7aIvbaAdL4GgIR0ClnDoMSbpedX2UKGgGR0BywDqX4TK1aAdL0WgIR0ClnFGSQo1DdX2UKGgGR0BBiYYJmdy1aAdLfWgIR0ClnG/SQYDUdX2UKGgGR0Bv2MtK7I1caAdLy2gIR0ClnI9pyp71dX2UKGgGR0BvkNUXHim3aAdLuGgIR0ClnIyYoiLVdX2UKGgGR0Byhf/io86naAdLz2gIR0ClnJposZpBdX2UKGgGR0BS0qcmShalaAdLbGgIR0ClnR4qwyIpdX2UKGgGR0BxoTtAs053aAdLqWgIR0ClnT0ornTzdX2UKGgGR0ByhabhFVkuaAdLwGgIR0ClnTg1NxlydX2UKGgGR0BzRRFnZkCnaAdL7mgIR0ClnVmaH9FXdX2UKGgGR0By95x7zCk5aAdLxGgIR0ClnWysCDEndX2UKGgGR0BwpEtNBWxRaAdLqWgIR0CltJjhLoOhdX2UKGgGR0ByTSmhufmLaAdL2WgIR0CltO5Jsfq5dX2UKGgGR0BzovKDCgscaAdLwWgIR0CltQMB6rvLdX2UKGgGR0ByZYhRqGlAaAdLpGgIR0CltR30oSctdX2UKGgGR0Bya3M8ox5+aAdLlGgIR0CltTYtpVS5dX2UKGgGR0BygHYh+vyLaAdLv2gIR0CltTAH3UQTdX2UKGgGR0ByNW6TW5H3aAdLvmgIR0CltUwHiWE9dX2UKGgGR0BvAfSpiqhlaAdLp2gIR0CltUetjkMkdX2UKGgGR0BwhXwOOKfnaAdLzmgIR0CltUrpRoAXdX2UKGgGR0Bzy564UeuFaAdLuWgIR0CltZPA44p+dX2UKGgGR0ByLwETxoZiaAdLwWgIR0CltbTPjXFtdX2UKGgGR0Bwb+n4wh4daAdLsGgIR0CltiN21UlzdX2UKGgGR0ByM/zOHFglaAdLyWgIR0Cltkz/6wdKdX2UKGgGR0ByVaJxeb/faAdLw2gIR0CltlYptrKvdX2UKGgGR0BxRN+KCQLeaAdLxmgIR0CltpNx2jfvdX2UKGgGR0ByhXBO58SgaAdLyWgIR0Cltoiojv/jdX2UKGgGR0Bx/1l6JIlMaAdLv2gIR0CltqIVdonKdX2UKGgGR0BykGe+VTrFaAdLp2gIR0CltuERSP2gdX2UKGgGR0BvEvMSsbNsaAdLo2gIR0CltwVUVBUrdX2UKGgGR0BzIphE0BOpaAdLvWgIR0CltzYjjaPCdX2UKGgGR0By7dWo3rD7aAdL0GgIR0CltzkkrwvydX2UKGgGR0Bw1kPd2xIKaAdLxGgIR0Clt0Mu3+dcdX2UKGgGR0ByGrlT3qRmaAdLyWgIR0Clt20Gu9vkdX2UKGgGR0ByfUG+sYEXaAdLsGgIR0Clt3XQUpNLdX2UKGgGR0B0NEwRGtp3aAdL72gIR0Clt3uryUcGdX2UKGgGR0B0IYqI7/4qaAdL12gIR0Clt432mHgxdX2UKGgGR0BxE7sF+uvEaAdLsGgIR0CluAMK9f1IdX2UKGgGR0BvceGqPwNLaAdLrWgIR0CluGnzQNTcdX2UKGgGR0BymK0rsjVyaAdLw2gIR0CluGsnqmj1dX2UKGgGR0BxnbGXHBDYaAdL2WgIR0CluKWSlnAZdX2UKGgGR0ByWSE384xUaAdLxmgIR0CluKsMiKR/dX2UKGgGR0Bu0avcJtzkaAdLrWgIR0CluOqbjLjhdX2UKGgGR0BxkbozN2TxaAdLxWgIR0CluQ1donKGdX2UKGgGR0BPW1gQYk3TaAdLj2gIR0CluSgVoHs1dX2UKGgGR0BwphDArQPaaAdL6WgIR0CluTFwDNhWdX2UKGgGR0BytBrftQbdaAdLpGgIR0CluUD3mFJydX2UKGgGR0Bvq4kLQXyiaAdLtGgIR0CluUVCojwAdX2UKGgGR0BzRRLQHAymaAdLu2gIR0CluU9o371qdX2UKGgGR0BzIj5oGpuNaAdLsmgIR0CluXrNfPX1dX2UKGgGR0ByWqxoqTbGaAdL52gIR0CluckN4JNTdX2UKGgGR0Bztu9DhLoPaAdL72gIR0Cluib2USqVdX2UKGgGR0Bx8w0SAYpEaAdLzGgIR0ClumGhVU++dX2UKGgGR0Bx90aBI4EPaAdLwmgIR0ClurneSB9UdX2UKGgGR0ByPdHd43WGaAdNwgFoCEdApbrEHUtqYnV9lChoBkdAc0CU7jkuH2gHS8doCEdApbrLbah6B3V9lChoBkdAcQq7JGOMl2gHS7ZoCEdApbrWcDr7f3V9lChoBkdAckSzKs+3Y2gHS8hoCEdApbsEynDR+nV9lChoBkdAcBnZuQ6p52gHS7NoCEdApbsrd56dD3V9lChoBkdAcpCj5bhWHWgHS8doCEdApbtDsWweNnV9lChoBkdAcmcqqOtGNWgHS7hoCEdApbt2pKjBVXV9lChoBkdAcrTiH6/IsGgHS8JoCEdApbuFTisGPnV9lChoBkdAceo4k/r0KGgHS81oCEdApbukIPbwjXV9lChoBkdAcrpgUlAu7GgHS9xoCEdApbuzU7Sy+3V9lChoBkdAc3wXT3IuG2gHS9poCEdApbu1psXSB3V9lChoBkdAckZ065oXbmgHS95oCEdApbv+Hi3ocXV9lChoBkdAcFpRigCfYmgHS8ZoCEdApbwIoTfzjHV9lChoBkdAcJhJRwZOz2gHS69oCEdApbwal+EytXV9lChoBkdAcju5myxA0WgHS5VoCEdApbxSA+Y+jnV9lChoBkdAczPWmxdIG2gHS8poCEdApbyPhESdv3V9lChoBkdAcnwveP7vX2gHS7RoCEdApbyZWLgn+nV9lChoBkdAcQR67dznzWgHS79oCEdApbzB1PnB+HV9lChoBkdAcqpbF0gbImgHS8FoCEdApbzQm9g4O3V9lChoBkdAclPkzGgi/2gHS7hoCEdApbzjYmLLp3V9lChoBkdAcHZCUornT2gHS7doCEdApb0DkyULUnV9lChoBkdAbx5solUp/mgHS6poCEdApb0zTtsvZnV9lChoBkdAb2Ygq3EycmgHS51oCEdApb1D70nPV3V9lChoBkdAcgV0a6z3RGgHS89oCEdApb1aQLeANHV9lChoBkdAcU/DLKV6eGgHS8FoCEdApb1jXg9/0HV9lChoBkdAcaMhbGFSKmgHS75oCEdApb2Z+SbH63V9lChoBkdAclXDMvAXVWgHS6xoCEdApb3ArJ8v3HV9lChoBkdAc1O6Hj6vaGgHS89oCEdApb21N5+pfnV9lChoBkdAcN3MOPNmlWgHS6loCEdApb3L9MsYmHV9lChoBkdAcvBM4LkS3GgHS8ZoCEdApb5Kguh9LHV9lChoBkdAcJmWw/xDs2gHS55oCEdApb5V0tAcDXV9lChoBkdAb2eOwPiDNGgHS7xoCEdApb5xoXbdrXV9lChoBkdAc/xUlAu7H2gHS/hoCEdApb53fuTibXV9lChoBkdAcLwsOXmeUmgHS6JoCEdApb6EZeiSJXV9lChoBkdAc30dFOO802gHS9xoCEdApb7Q9Net0XV9lChoBkdAcSm2tMfzSWgHS8loCEdApb7ZBomG/XV9lChoBkdAcK0iiZfD12gHS7toCEdApb7qZSeiBXV9lChoBkdAcESfQa72+WgHS7NoCEdApb8Valk6LnV9lChoBkdAcU7zKcNH6WgHS71oCEdApb9N3wCr93V9lChoBkdAccR0mtyPuGgHS9ZoCEdApb9iTINmUXV9lChoBkdActvVNpM6BGgHS9RoCEdApb+BElVtGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |