multitude0099
commited on
Commit
•
f9a41a6
1
Parent(s):
a7d2c59
PPO Lunarlander with 10 epochs and 2M steps
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +38 -38
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 282.96 +/- 19.73
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c0923a290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c0923a320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c0923a3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c0923a440>", "_build": "<function ActorCriticPolicy._build at 0x7f4c0923a4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c0923a560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c0923a5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c0923a680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c0923a710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c0923a7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c0923a830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c0923a8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4c09232580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687039138661581966, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDqDL6uErI+Rr5+PhWpyL7GI489fKuUPQAAAAAAAAAAwLWnPRcmVz7ZGbK9s8huvvfH4Ty3wI+9AAAAAAAAAAAA/jY8rmfxulu+kLxTfI08eTEivKvndD0AAIA/AACAP6YVEr50ZQA/Tn6DPpnswb7DeZE8YQ+vPQAAAAAAAAAAoD8Dvop0uj87f/q+/q9lvhUhWr4CH6S+AAAAAAAAAADN/ao84WCKuoHXjzhDmoEzMlRYuh46p7cAAIA/AACAP81YnzspIFe6taDCtzGHzLIeiLA6pqzkNgAAgD8AAIA/gPUVPotH7D3lzj6+uphUvlfBXz2dYi08AAAAAAAAAABGSz2+sVODP6StAb+gD/G+3nuRvqTPqb4AAAAAAAAAAHNctD1UgIc+oCK8vZPKpr50fXY9hdF/PQAAAAAAAAAAZt7ju23qIz7uDDG+FtF5vmNNir286Ym9AAAAAAAAAACA7Hc9KdrWPrBWzTymScO+HXFxPfieyboAAAAAAAAAADOHEjyjrLA/hkU5PvS1pr4uqSa8QfolvQAAAAAAAAAATe1GPdppSz5+A1I9iSaZvj4Bxz0WbOU6AAAAAAAAAACaifu8IQaZvEAMc7zTyDY9k4EIPjpfDL4AAIA/AACAPzN/Pb2S93c+cidGP6sf9L42qfk9JtIRPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFYv8IiTuMAWyUS8WMAXSUR0DBYDHzYmLMdX2UKGgGR0Bv7RGKAJ9iaAdL8GgIR0DBYDebLEDRdX2UKGgGR0BxQlLSNOuaaAdL3WgIR0DBYFoWFev7dX2UKGgGR0BynvO7g88taAdL2mgIR0DBYHREhJRPdX2UKGgGR0BzGoo8ZDRdaAdNFgFoCEdAwWB+nwXqJXV9lChoBkdAcfHwW3z+WGgHS9xoCEdAwWCNUjLSu3V9lChoBkdAc3LKHO8kEGgHS+ZoCEdAwWCc7vG6w3V9lChoBkdAbmGgB91EE2gHS/BoCEdAwWCn75VOsXV9lChoBkdAcZA83++/QGgHS/VoCEdAwWC5LPldT3V9lChoBkdAcQ3814xDcGgHS8NoCEdAwWC9VWjoIXV9lChoBkdAcgSjWTX8O2gHS9hoCEdAwWDQbPQfIXV9lChoBkdAcwL7bcoH9mgHS+poCEdAwWDW/bj943V9lChoBkdAcImH0K7ZnWgHS/FoCEdAwWDdu5z5oHV9lChoBkdAcf77cO9WZWgHS9xoCEdAwWDq5IYm9nV9lChoBkdAchzrt3OfNGgHS/9oCEdAwWDr0fYBeXV9lChoBkdAcjdSrYGt62gHTQ0BaAhHQMFg8YW1twd1fZQoaAZHQHELBPoFFDxoB0v0aAhHQMFg9xrzoU11fZQoaAZHQHIdP/echDBoB0v1aAhHQMFhIM5n14B1fZQoaAZHQHEHNEkSmIloB0vFaAhHQMFhLGOU+s51fZQoaAZHQHDuY4MnZ01oB0vXaAhHQMFhLQo1DSh1fZQoaAZHQHJpnjyWiURoB0vXaAhHQMFhVj3mFJx1fZQoaAZHQHE47bQC0WxoB00ZAWgIR0DBYVuRHPNWdX2UKGgGR0BwWr5oGpuNaAdNCAFoCEdAwWF4woLG73V9lChoBkdAcXSsC1Z1WGgHS8xoCEdAwWF/ilzltHV9lChoBkdAc2hMj/uLJmgHS/FoCEdAwWGA2uPmxXV9lChoBkdAb6wLNwBHTmgHS+5oCEdAwWGCmE4//3V9lChoBkdActsShrWRR2gHS9FoCEdAwWGKsOoYN3V9lChoBkdAcvXAVwgkkmgHS+hoCEdAwWGP9tuUEHV9lChoBkdAci3edkJ8fGgHS9JoCEdAwWGYZ2pyZXV9lChoBkdARqk+zMRpUWgHS4xoCEdAwWGZf2K2rnV9lChoBkdAcjw8LKFIu2gHS8loCEdAwWGcp1ie/nV9lChoBkdAb5W7I1cdHWgHS9JoCEdAwWGdxlxwQ3V9lChoBkdAcSc0fozN2WgHS/VoCEdAwWGvbypaR3V9lChoBkdAcsSjL0SRKmgHS9doCEdAwWJdQHAymHV9lChoBkdAcw7Fkxyn1mgHS/toCEdAwWJ50XgtOHV9lChoBkdAciGVKf4AS2gHS91oCEdAwWKQFGG21HV9lChoBkdAc2IMIeHSGGgHS8ZoCEdAwWKwFXaJynV9lChoBkdAcEmEdNnGsGgHS/NoCEdAwWK07QswtnV9lChoBkdAb8Vs+mm+CmgHS+9oCEdAwWLljvNNanV9lChoBkdAb6Hio86mwmgHS9doCEdAwWLwjTrmhnV9lChoBkdAcWhAaNuLrGgHS91oCEdAwWL+tGus93V9lChoBkdAcbyOO801qGgHTQ4BaAhHQMFjApbt7a91fZQoaAZHQHFQ4NutOmBoB0v8aAhHQMFjD42jwhJ1fZQoaAZHQHI4bqdH2AZoB00KAWgIR0DBYxfHFPzndX2UKGgGR0BwmKpuMuOCaAdNGwFoCEdAwWMcT7EYO3V9lChoBkdAcoc/Mnqmj2gHS/RoCEdAwWMd9tMwlHV9lChoBkdAcTo/t6X0G2gHTQIBaAhHQMFjJBCMPz51fZQoaAZHQG7T+RPoFFFoB0v0aAhHQMFjN0EPlMh1fZQoaAZHQGBBneSB9ThoB03oA2gIR0DBYz0hib2EdX2UKGgGR0ByED+kxh2GaAdLxWgIR0DBY2krupjudX2UKGgGR0Byy+9rXUYsaAdL7WgIR0DBY2zMV1wHdX2UKGgGR0Bzelf2K2roaAdL42gIR0DBY6ImkWRBdX2UKGgGR0ByLCKR+z+naAdL5GgIR0DBY8bRIBikdX2UKGgGR0BwAahsZYPoaAdL0GgIR0DBY+hdOZb7dX2UKGgGR0BySg7xNIsiaAdLyGgIR0DBY/DSJCSidX2UKGgGR0BytPedkJ8faAdNCwFoCEdAwWP39deIEnV9lChoBkdAco6GX5WRzWgHS+9oCEdAwWQGnAqNInV9lChoBkdAccTMUypJgGgHS8loCEdAwWQN79AHFHV9lChoBkdAb43W07bL2mgHS+VoCEdAwWQor+5vtXV9lChoBkdAcbj1Z1V5r2gHS8RoCEdAwWQtW1+iJ3V9lChoBkdAcHSsguAZsWgHTQcBaAhHQMFkOvKuB+Z1fZQoaAZHQHH/etCAtnRoB0vUaAhHQMFkOvSUkfN1fZQoaAZHQG7SAmZ3LV5oB0v0aAhHQMFkQBGhEjR1fZQoaAZHQHMzdDMNc4ZoB00NAWgIR0DBZE/gzguRdX2UKGgGR0Bxm2HO8kD7aAdNCQFoCEdAwWRf2r4nGHV9lChoBkdAc5tHGS6lL2gHS/VoCEdAwWSaAoXsPnV9lChoBkdAca0Ahje9BmgHTQ0BaAhHQMFkrwEIPbx1fZQoaAZHQHH5OuFHrhRoB0vsaAhHQMFku+9i+cp1fZQoaAZHQGz1kk8ifQNoB0vWaAhHQMFkwUPH1e11fZQoaAZHQHGWZDArQPZoB0vKaAhHQMFk3mL9/Bp1fZQoaAZHQHKQrtzCDVZoB0vwaAhHQMFk6zUqhDh1fZQoaAZHQHKHNbcGkepoB0vsaAhHQMFk7NaY/ml1fZQoaAZHQHB/x/y5I6NoB0vYaAhHQMFk7trCWNZ1fZQoaAZHQHJnuxwAEMdoB0v2aAhHQMFk+KVY6n11fZQoaAZHQHCSPUSZjQRoB0vYaAhHQMFlAvi97F91fZQoaAZHQHCNFNHpbEBoB0vZaAhHQMFlDPR7Z391fZQoaAZHQHMRQNCqp99oB00BAWgIR0DBZSGx2SuAdX2UKGgGR0BuGKv3ai9JaAdL0WgIR0DBZSEmY0EYdX2UKGgGR0ByWdcQiA2AaAdL+mgIR0DBZSegte2NdX2UKGgGR0BxI5JyyUs4aAdL9GgIR0DBZTIw22ofdX2UKGgGR0BxgVdpqREGaAdNCAFoCEdAwWU2wnpjc3V9lChoBkdAcguX9zfaYmgHS9hoCEdAwWVccDr7f3V9lChoBkdAcnn0qYqoZWgHS/xoCEdAwWVo4LkS3HV9lChoBkdAcsKNy5qdpmgHS95oCEdAwWVtvCuU2XV9lChoBkdAcvAG0NSZSmgHS/FoCEdAwWWDKkEcKnV9lChoBkdAcFK9ugpSaWgHS89oCEdAwWWEavRqoXV9lChoBkdAcvoJWvKU3WgHS8doCEdAwWWN1Hvtt3V9lChoBkdAcPzchC+lCWgHS9FoCEdAwWWSf4AS4HV9lChoBkdAcapHhCMP0GgHS/BoCEdAwWWs0v4/NnV9lChoBkdAc10thd+ocmgHS+VoCEdAwWXGsasIV3V9lChoBkdAcgefzBhx52gHTQYBaAhHQMFlzrOAy2x1fZQoaAZHQHJYcnuy/sVoB0v8aAhHQMFl0XkHUtt1fZQoaAZHQHJR4GIKtxNoB0vRaAhHQMFl0wj+rEN1fZQoaAZHQHHMP1DjR2NoB0vkaAhHQMFl3D4xk/d1fZQoaAZHQHI/f/FR51NoB0vWaAhHQMFl5IHcDbJ1fZQoaAZHQHMCN0A93bFoB0viaAhHQMFl6JzDGcZ1fZQoaAZHQHIauD8LropoB0v+aAhHQMFl7chC+lF1fZQoaAZHQHFNnjIaLn9oB0vdaAhHQMFmIAogFHJ1fZQoaAZHQHI+tRrJr+JoB0voaAhHQMFmJHaFmFt1fZQoaAZHQHApx6fJ3gVoB0vaaAhHQMFmNGfwqiJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 264, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1818d34ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1818d34f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1818d35000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1818d35090>", "_build": "<function ActorCriticPolicy._build at 0x7f1818d35120>", "forward": "<function ActorCriticPolicy.forward at 0x7f1818d351b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1818d35240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1818d352d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1818d35360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1818d353f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1818d35480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1818d35510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1818d26980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686855136171998882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1k7t7spm6O0DkuLfayrN5fkW6p9IDOAAAgD8AAIA/TaxpvSSfWjzmWSk9d5SsvodRBb17kWE9AAAAAAAAAACa4aM7zxUDvHirEr30RAY9STtJPRa+DzoAAIA/AACAPxp6TT2Hy7s+ZVYbvHtYM7+IPRQ+y907vQAAAAAAAAAAAMBDO78OtT9O5Jo+jn4jPg5hYrtdV4y9AAAAAAAAAADa4r+9AQlSPmYxWjuAkwi/LkAFvVTWIDoAAAAAAAAAAGZsqr2NbRc+xwInPlBK1L4GgiI9drW/PAAAAAAAAAAAZtNpvfacV7qW+Za1hfygsAChaLoSN7M0AACAPwAAgD+aps28w/VOui7bxjacW4oxjS0uuzKx7LUAAIA/AACAPzOtQrwjAkI/moSlvXcSTL/Lbzw97OOjvAAAAAAAAAAAbUkSvl+xoz4Fkhg+dxANv+9Mfr1y7+c9AAAAAAAAAADgEG8+A/1kP8s85TzuQxK/lUn2PuaSq70AAAAAAAAAAADMtrtIAdS4IIl0Os3wsDIfwU67YKaTuQAAgD8AAIA/ik6FvnI2Lz8IP1k9gTERv0cC9L4lO3s+AAAAAAAAAADm0B49QACkP10VzT55ujq/arm4PDcsRj4AAAAAAAAAAOZn4r1PeaU/p8opv/VZCb8mZZ69hhbBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAobE9+w1SMAWyUS72MAXSUR0Clm7sqBmPHdX2UKGgGR0Bzf032mHgxaAdLyGgIR0Clm+UdzXBhdX2UKGgGR0ByXSx/ustDaAdL1GgIR0Clm/W4Vh1DdX2UKGgGR0BzbHoC+10DaAdL1WgIR0ClnAn2IwdsdX2UKGgGR0BySkWWQfZFaAdLvmgIR0ClnBlrEcbSdX2UKGgGR0By0OY7aIvbaAdL4GgIR0ClnDoMSbpedX2UKGgGR0BywDqX4TK1aAdL0WgIR0ClnFGSQo1DdX2UKGgGR0BBiYYJmdy1aAdLfWgIR0ClnG/SQYDUdX2UKGgGR0Bv2MtK7I1caAdLy2gIR0ClnI9pyp71dX2UKGgGR0BvkNUXHim3aAdLuGgIR0ClnIyYoiLVdX2UKGgGR0Byhf/io86naAdLz2gIR0ClnJposZpBdX2UKGgGR0BS0qcmShalaAdLbGgIR0ClnR4qwyIpdX2UKGgGR0BxoTtAs053aAdLqWgIR0ClnT0ornTzdX2UKGgGR0ByhabhFVkuaAdLwGgIR0ClnTg1NxlydX2UKGgGR0BzRRFnZkCnaAdL7mgIR0ClnVmaH9FXdX2UKGgGR0By95x7zCk5aAdLxGgIR0ClnWysCDEndX2UKGgGR0BwpEtNBWxRaAdLqWgIR0CltJjhLoOhdX2UKGgGR0ByTSmhufmLaAdL2WgIR0CltO5Jsfq5dX2UKGgGR0BzovKDCgscaAdLwWgIR0CltQMB6rvLdX2UKGgGR0ByZYhRqGlAaAdLpGgIR0CltR30oSctdX2UKGgGR0Bya3M8ox5+aAdLlGgIR0CltTYtpVS5dX2UKGgGR0BygHYh+vyLaAdLv2gIR0CltTAH3UQTdX2UKGgGR0ByNW6TW5H3aAdLvmgIR0CltUwHiWE9dX2UKGgGR0BvAfSpiqhlaAdLp2gIR0CltUetjkMkdX2UKGgGR0BwhXwOOKfnaAdLzmgIR0CltUrpRoAXdX2UKGgGR0Bzy564UeuFaAdLuWgIR0CltZPA44p+dX2UKGgGR0ByLwETxoZiaAdLwWgIR0CltbTPjXFtdX2UKGgGR0Bwb+n4wh4daAdLsGgIR0CltiN21UlzdX2UKGgGR0ByM/zOHFglaAdLyWgIR0Cltkz/6wdKdX2UKGgGR0ByVaJxeb/faAdLw2gIR0CltlYptrKvdX2UKGgGR0BxRN+KCQLeaAdLxmgIR0CltpNx2jfvdX2UKGgGR0ByhXBO58SgaAdLyWgIR0Cltoiojv/jdX2UKGgGR0Bx/1l6JIlMaAdLv2gIR0CltqIVdonKdX2UKGgGR0BykGe+VTrFaAdLp2gIR0CltuERSP2gdX2UKGgGR0BvEvMSsbNsaAdLo2gIR0CltwVUVBUrdX2UKGgGR0BzIphE0BOpaAdLvWgIR0CltzYjjaPCdX2UKGgGR0By7dWo3rD7aAdL0GgIR0CltzkkrwvydX2UKGgGR0Bw1kPd2xIKaAdLxGgIR0Clt0Mu3+dcdX2UKGgGR0ByGrlT3qRmaAdLyWgIR0Clt20Gu9vkdX2UKGgGR0ByfUG+sYEXaAdLsGgIR0Clt3XQUpNLdX2UKGgGR0B0NEwRGtp3aAdL72gIR0Clt3uryUcGdX2UKGgGR0B0IYqI7/4qaAdL12gIR0Clt432mHgxdX2UKGgGR0BxE7sF+uvEaAdLsGgIR0CluAMK9f1IdX2UKGgGR0BvceGqPwNLaAdLrWgIR0CluGnzQNTcdX2UKGgGR0BymK0rsjVyaAdLw2gIR0CluGsnqmj1dX2UKGgGR0BxnbGXHBDYaAdL2WgIR0CluKWSlnAZdX2UKGgGR0ByWSE384xUaAdLxmgIR0CluKsMiKR/dX2UKGgGR0Bu0avcJtzkaAdLrWgIR0CluOqbjLjhdX2UKGgGR0BxkbozN2TxaAdLxWgIR0CluQ1donKGdX2UKGgGR0BPW1gQYk3TaAdLj2gIR0CluSgVoHs1dX2UKGgGR0BwphDArQPaaAdL6WgIR0CluTFwDNhWdX2UKGgGR0BytBrftQbdaAdLpGgIR0CluUD3mFJydX2UKGgGR0Bvq4kLQXyiaAdLtGgIR0CluUVCojwAdX2UKGgGR0BzRRLQHAymaAdLu2gIR0CluU9o371qdX2UKGgGR0BzIj5oGpuNaAdLsmgIR0CluXrNfPX1dX2UKGgGR0ByWqxoqTbGaAdL52gIR0CluckN4JNTdX2UKGgGR0Bztu9DhLoPaAdL72gIR0Cluib2USqVdX2UKGgGR0Bx8w0SAYpEaAdLzGgIR0ClumGhVU++dX2UKGgGR0Bx90aBI4EPaAdLwmgIR0ClurneSB9UdX2UKGgGR0ByPdHd43WGaAdNwgFoCEdApbrEHUtqYnV9lChoBkdAc0CU7jkuH2gHS8doCEdApbrLbah6B3V9lChoBkdAcQq7JGOMl2gHS7ZoCEdApbrWcDr7f3V9lChoBkdAckSzKs+3Y2gHS8hoCEdApbsEynDR+nV9lChoBkdAcBnZuQ6p52gHS7NoCEdApbsrd56dD3V9lChoBkdAcpCj5bhWHWgHS8doCEdApbtDsWweNnV9lChoBkdAcmcqqOtGNWgHS7hoCEdApbt2pKjBVXV9lChoBkdAcrTiH6/IsGgHS8JoCEdApbuFTisGPnV9lChoBkdAceo4k/r0KGgHS81oCEdApbukIPbwjXV9lChoBkdAcrpgUlAu7GgHS9xoCEdApbuzU7Sy+3V9lChoBkdAc3wXT3IuG2gHS9poCEdApbu1psXSB3V9lChoBkdAckZ065oXbmgHS95oCEdApbv+Hi3ocXV9lChoBkdAcFpRigCfYmgHS8ZoCEdApbwIoTfzjHV9lChoBkdAcJhJRwZOz2gHS69oCEdApbwal+EytXV9lChoBkdAcju5myxA0WgHS5VoCEdApbxSA+Y+jnV9lChoBkdAczPWmxdIG2gHS8poCEdApbyPhESdv3V9lChoBkdAcnwveP7vX2gHS7RoCEdApbyZWLgn+nV9lChoBkdAcQR67dznzWgHS79oCEdApbzB1PnB+HV9lChoBkdAcqpbF0gbImgHS8FoCEdApbzQm9g4O3V9lChoBkdAclPkzGgi/2gHS7hoCEdApbzjYmLLp3V9lChoBkdAcHZCUornT2gHS7doCEdApb0DkyULUnV9lChoBkdAbx5solUp/mgHS6poCEdApb0zTtsvZnV9lChoBkdAb2Ygq3EycmgHS51oCEdApb1D70nPV3V9lChoBkdAcgV0a6z3RGgHS89oCEdApb1aQLeANHV9lChoBkdAcU/DLKV6eGgHS8FoCEdApb1jXg9/0HV9lChoBkdAcaMhbGFSKmgHS75oCEdApb2Z+SbH63V9lChoBkdAclXDMvAXVWgHS6xoCEdApb3ArJ8v3HV9lChoBkdAc1O6Hj6vaGgHS89oCEdApb21N5+pfnV9lChoBkdAcN3MOPNmlWgHS6loCEdApb3L9MsYmHV9lChoBkdAcvBM4LkS3GgHS8ZoCEdApb5Kguh9LHV9lChoBkdAcJmWw/xDs2gHS55oCEdApb5V0tAcDXV9lChoBkdAb2eOwPiDNGgHS7xoCEdApb5xoXbdrXV9lChoBkdAc/xUlAu7H2gHS/hoCEdApb53fuTibXV9lChoBkdAcLwsOXmeUmgHS6JoCEdApb6EZeiSJXV9lChoBkdAc30dFOO802gHS9xoCEdApb7Q9Net0XV9lChoBkdAcSm2tMfzSWgHS8loCEdApb7ZBomG/XV9lChoBkdAcK0iiZfD12gHS7toCEdApb7qZSeiBXV9lChoBkdAcESfQa72+WgHS7NoCEdApb8Valk6LnV9lChoBkdAcU7zKcNH6WgHS71oCEdApb9N3wCr93V9lChoBkdAccR0mtyPuGgHS9ZoCEdApb9iTINmUXV9lChoBkdActvVNpM6BGgHS9RoCEdApb+BElVtGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6893ec0c5e7f2fe9e1a7163f935382d9ac03e48e428660083f16dd42bb6709b
|
3 |
+
size 146178
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,57 +4,72 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "
|
58 |
"dtype": "float32",
|
59 |
"bounded_below": "[ True True True True True True True True]",
|
60 |
"bounded_above": "[ True True True True True True True True]",
|
@@ -69,7 +84,7 @@
|
|
69 |
},
|
70 |
"action_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
-
":serialized:": "
|
73 |
"n": "4",
|
74 |
"start": "0",
|
75 |
"_shape": [],
|
@@ -77,21 +92,6 @@
|
|
77 |
"_np_random": null
|
78 |
},
|
79 |
"n_envs": 16,
|
80 |
-
"n_steps": 1024,
|
81 |
-
"gamma": 0.999,
|
82 |
-
"gae_lambda": 0.98,
|
83 |
-
"ent_coef": 0.01,
|
84 |
-
"vf_coef": 0.5,
|
85 |
-
"max_grad_norm": 0.5,
|
86 |
-
"batch_size": 264,
|
87 |
-
"n_epochs": 4,
|
88 |
-
"clip_range": {
|
89 |
-
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
-
},
|
92 |
-
"clip_range_vf": null,
|
93 |
-
"normalize_advantage": true,
|
94 |
-
"target_kl": null,
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1818d34ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1818d34f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1818d35000>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1818d35090>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1818d35120>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1818d351b0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1818d35240>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1818d352d0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1818d35360>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1818d353f0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1818d35480>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1818d35510>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1818d26980>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1686855136171998882,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1k7t7spm6O0DkuLfayrN5fkW6p9IDOAAAgD8AAIA/TaxpvSSfWjzmWSk9d5SsvodRBb17kWE9AAAAAAAAAACa4aM7zxUDvHirEr30RAY9STtJPRa+DzoAAIA/AACAPxp6TT2Hy7s+ZVYbvHtYM7+IPRQ+y907vQAAAAAAAAAAAMBDO78OtT9O5Jo+jn4jPg5hYrtdV4y9AAAAAAAAAADa4r+9AQlSPmYxWjuAkwi/LkAFvVTWIDoAAAAAAAAAAGZsqr2NbRc+xwInPlBK1L4GgiI9drW/PAAAAAAAAAAAZtNpvfacV7qW+Za1hfygsAChaLoSN7M0AACAPwAAgD+aps28w/VOui7bxjacW4oxjS0uuzKx7LUAAIA/AACAPzOtQrwjAkI/moSlvXcSTL/Lbzw97OOjvAAAAAAAAAAAbUkSvl+xoz4Fkhg+dxANv+9Mfr1y7+c9AAAAAAAAAADgEG8+A/1kP8s85TzuQxK/lUn2PuaSq70AAAAAAAAAAADMtrtIAdS4IIl0Os3wsDIfwU67YKaTuQAAgD8AAIA/ik6FvnI2Lz8IP1k9gTERv0cC9L4lO3s+AAAAAAAAAADm0B49QACkP10VzT55ujq/arm4PDcsRj4AAAAAAAAAAOZn4r1PeaU/p8opv/VZCb8mZZ69hhbBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAobE9+w1SMAWyUS72MAXSUR0Clm7sqBmPHdX2UKGgGR0Bzf032mHgxaAdLyGgIR0Clm+UdzXBhdX2UKGgGR0ByXSx/ustDaAdL1GgIR0Clm/W4Vh1DdX2UKGgGR0BzbHoC+10DaAdL1WgIR0ClnAn2IwdsdX2UKGgGR0BySkWWQfZFaAdLvmgIR0ClnBlrEcbSdX2UKGgGR0By0OY7aIvbaAdL4GgIR0ClnDoMSbpedX2UKGgGR0BywDqX4TK1aAdL0WgIR0ClnFGSQo1DdX2UKGgGR0BBiYYJmdy1aAdLfWgIR0ClnG/SQYDUdX2UKGgGR0Bv2MtK7I1caAdLy2gIR0ClnI9pyp71dX2UKGgGR0BvkNUXHim3aAdLuGgIR0ClnIyYoiLVdX2UKGgGR0Byhf/io86naAdLz2gIR0ClnJposZpBdX2UKGgGR0BS0qcmShalaAdLbGgIR0ClnR4qwyIpdX2UKGgGR0BxoTtAs053aAdLqWgIR0ClnT0ornTzdX2UKGgGR0ByhabhFVkuaAdLwGgIR0ClnTg1NxlydX2UKGgGR0BzRRFnZkCnaAdL7mgIR0ClnVmaH9FXdX2UKGgGR0By95x7zCk5aAdLxGgIR0ClnWysCDEndX2UKGgGR0BwpEtNBWxRaAdLqWgIR0CltJjhLoOhdX2UKGgGR0ByTSmhufmLaAdL2WgIR0CltO5Jsfq5dX2UKGgGR0BzovKDCgscaAdLwWgIR0CltQMB6rvLdX2UKGgGR0ByZYhRqGlAaAdLpGgIR0CltR30oSctdX2UKGgGR0Bya3M8ox5+aAdLlGgIR0CltTYtpVS5dX2UKGgGR0BygHYh+vyLaAdLv2gIR0CltTAH3UQTdX2UKGgGR0ByNW6TW5H3aAdLvmgIR0CltUwHiWE9dX2UKGgGR0BvAfSpiqhlaAdLp2gIR0CltUetjkMkdX2UKGgGR0BwhXwOOKfnaAdLzmgIR0CltUrpRoAXdX2UKGgGR0Bzy564UeuFaAdLuWgIR0CltZPA44p+dX2UKGgGR0ByLwETxoZiaAdLwWgIR0CltbTPjXFtdX2UKGgGR0Bwb+n4wh4daAdLsGgIR0CltiN21UlzdX2UKGgGR0ByM/zOHFglaAdLyWgIR0Cltkz/6wdKdX2UKGgGR0ByVaJxeb/faAdLw2gIR0CltlYptrKvdX2UKGgGR0BxRN+KCQLeaAdLxmgIR0CltpNx2jfvdX2UKGgGR0ByhXBO58SgaAdLyWgIR0Cltoiojv/jdX2UKGgGR0Bx/1l6JIlMaAdLv2gIR0CltqIVdonKdX2UKGgGR0BykGe+VTrFaAdLp2gIR0CltuERSP2gdX2UKGgGR0BvEvMSsbNsaAdLo2gIR0CltwVUVBUrdX2UKGgGR0BzIphE0BOpaAdLvWgIR0CltzYjjaPCdX2UKGgGR0By7dWo3rD7aAdL0GgIR0CltzkkrwvydX2UKGgGR0Bw1kPd2xIKaAdLxGgIR0Clt0Mu3+dcdX2UKGgGR0ByGrlT3qRmaAdLyWgIR0Clt20Gu9vkdX2UKGgGR0ByfUG+sYEXaAdLsGgIR0Clt3XQUpNLdX2UKGgGR0B0NEwRGtp3aAdL72gIR0Clt3uryUcGdX2UKGgGR0B0IYqI7/4qaAdL12gIR0Clt432mHgxdX2UKGgGR0BxE7sF+uvEaAdLsGgIR0CluAMK9f1IdX2UKGgGR0BvceGqPwNLaAdLrWgIR0CluGnzQNTcdX2UKGgGR0BymK0rsjVyaAdLw2gIR0CluGsnqmj1dX2UKGgGR0BxnbGXHBDYaAdL2WgIR0CluKWSlnAZdX2UKGgGR0ByWSE384xUaAdLxmgIR0CluKsMiKR/dX2UKGgGR0Bu0avcJtzkaAdLrWgIR0CluOqbjLjhdX2UKGgGR0BxkbozN2TxaAdLxWgIR0CluQ1donKGdX2UKGgGR0BPW1gQYk3TaAdLj2gIR0CluSgVoHs1dX2UKGgGR0BwphDArQPaaAdL6WgIR0CluTFwDNhWdX2UKGgGR0BytBrftQbdaAdLpGgIR0CluUD3mFJydX2UKGgGR0Bvq4kLQXyiaAdLtGgIR0CluUVCojwAdX2UKGgGR0BzRRLQHAymaAdLu2gIR0CluU9o371qdX2UKGgGR0BzIj5oGpuNaAdLsmgIR0CluXrNfPX1dX2UKGgGR0ByWqxoqTbGaAdL52gIR0CluckN4JNTdX2UKGgGR0Bztu9DhLoPaAdL72gIR0Cluib2USqVdX2UKGgGR0Bx8w0SAYpEaAdLzGgIR0ClumGhVU++dX2UKGgGR0Bx90aBI4EPaAdLwmgIR0ClurneSB9UdX2UKGgGR0ByPdHd43WGaAdNwgFoCEdApbrEHUtqYnV9lChoBkdAc0CU7jkuH2gHS8doCEdApbrLbah6B3V9lChoBkdAcQq7JGOMl2gHS7ZoCEdApbrWcDr7f3V9lChoBkdAckSzKs+3Y2gHS8hoCEdApbsEynDR+nV9lChoBkdAcBnZuQ6p52gHS7NoCEdApbsrd56dD3V9lChoBkdAcpCj5bhWHWgHS8doCEdApbtDsWweNnV9lChoBkdAcmcqqOtGNWgHS7hoCEdApbt2pKjBVXV9lChoBkdAcrTiH6/IsGgHS8JoCEdApbuFTisGPnV9lChoBkdAceo4k/r0KGgHS81oCEdApbukIPbwjXV9lChoBkdAcrpgUlAu7GgHS9xoCEdApbuzU7Sy+3V9lChoBkdAc3wXT3IuG2gHS9poCEdApbu1psXSB3V9lChoBkdAckZ065oXbmgHS95oCEdApbv+Hi3ocXV9lChoBkdAcFpRigCfYmgHS8ZoCEdApbwIoTfzjHV9lChoBkdAcJhJRwZOz2gHS69oCEdApbwal+EytXV9lChoBkdAcju5myxA0WgHS5VoCEdApbxSA+Y+jnV9lChoBkdAczPWmxdIG2gHS8poCEdApbyPhESdv3V9lChoBkdAcnwveP7vX2gHS7RoCEdApbyZWLgn+nV9lChoBkdAcQR67dznzWgHS79oCEdApbzB1PnB+HV9lChoBkdAcqpbF0gbImgHS8FoCEdApbzQm9g4O3V9lChoBkdAclPkzGgi/2gHS7hoCEdApbzjYmLLp3V9lChoBkdAcHZCUornT2gHS7doCEdApb0DkyULUnV9lChoBkdAbx5solUp/mgHS6poCEdApb0zTtsvZnV9lChoBkdAb2Ygq3EycmgHS51oCEdApb1D70nPV3V9lChoBkdAcgV0a6z3RGgHS89oCEdApb1aQLeANHV9lChoBkdAcU/DLKV6eGgHS8FoCEdApb1jXg9/0HV9lChoBkdAcaMhbGFSKmgHS75oCEdApb2Z+SbH63V9lChoBkdAclXDMvAXVWgHS6xoCEdApb3ArJ8v3HV9lChoBkdAc1O6Hj6vaGgHS89oCEdApb21N5+pfnV9lChoBkdAcN3MOPNmlWgHS6loCEdApb3L9MsYmHV9lChoBkdAcvBM4LkS3GgHS8ZoCEdApb5Kguh9LHV9lChoBkdAcJmWw/xDs2gHS55oCEdApb5V0tAcDXV9lChoBkdAb2eOwPiDNGgHS7xoCEdApb5xoXbdrXV9lChoBkdAc/xUlAu7H2gHS/hoCEdApb53fuTibXV9lChoBkdAcLwsOXmeUmgHS6JoCEdApb6EZeiSJXV9lChoBkdAc30dFOO802gHS9xoCEdApb7Q9Net0XV9lChoBkdAcSm2tMfzSWgHS8loCEdApb7ZBomG/XV9lChoBkdAcK0iiZfD12gHS7toCEdApb7qZSeiBXV9lChoBkdAcESfQa72+WgHS7NoCEdApb8Valk6LnV9lChoBkdAcU7zKcNH6WgHS71oCEdApb9N3wCr93V9lChoBkdAccR0mtyPuGgHS9ZoCEdApb9iTINmUXV9lChoBkdActvVNpM6BGgHS9RoCEdApb+BElVtGnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 1230,
|
55 |
+
"n_steps": 1024,
|
56 |
+
"gamma": 0.999,
|
57 |
+
"gae_lambda": 0.98,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 10,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
"observation_space": {
|
71 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
"dtype": "float32",
|
74 |
"bounded_below": "[ True True True True True True True True]",
|
75 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
84 |
},
|
85 |
"action_space": {
|
86 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
"n": "4",
|
89 |
"start": "0",
|
90 |
"_shape": [],
|
|
|
92 |
"_np_random": null
|
93 |
},
|
94 |
"n_envs": 16,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"lr_schedule": {
|
96 |
":type:": "<class 'function'>",
|
97 |
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2689dec5a074eca8ad52c6a4fc4d4480e216ae721a737ec8d84e060b6f03220a
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bc1758a278ec911a4be588987a83cc5ad75c7142c51c6025b372ee0c7e3b5c4
|
3 |
+
size 43201
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.22.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
|
|
2 |
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.22.4
|
7 |
- Cloudpickle: 2.2.1
|
8 |
- Gymnasium: 0.28.1
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 282.9574660769196, "std_reward": 19.73143580858302, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T23:39:59.281668"}
|