multitude0099 commited on
Commit
f9a41a6
1 Parent(s): a7d2c59

PPO Lunarlander with 10 epochs and 2M steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 277.40 +/- 6.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 282.96 +/- 19.73
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c0923a290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c0923a320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c0923a3b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c0923a440>", "_build": "<function ActorCriticPolicy._build at 0x7f4c0923a4d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4c0923a560>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c0923a5f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c0923a680>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4c0923a710>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c0923a7a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c0923a830>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c0923a8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4c09232580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687039138661581966, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDqDL6uErI+Rr5+PhWpyL7GI489fKuUPQAAAAAAAAAAwLWnPRcmVz7ZGbK9s8huvvfH4Ty3wI+9AAAAAAAAAAAA/jY8rmfxulu+kLxTfI08eTEivKvndD0AAIA/AACAP6YVEr50ZQA/Tn6DPpnswb7DeZE8YQ+vPQAAAAAAAAAAoD8Dvop0uj87f/q+/q9lvhUhWr4CH6S+AAAAAAAAAADN/ao84WCKuoHXjzhDmoEzMlRYuh46p7cAAIA/AACAP81YnzspIFe6taDCtzGHzLIeiLA6pqzkNgAAgD8AAIA/gPUVPotH7D3lzj6+uphUvlfBXz2dYi08AAAAAAAAAABGSz2+sVODP6StAb+gD/G+3nuRvqTPqb4AAAAAAAAAAHNctD1UgIc+oCK8vZPKpr50fXY9hdF/PQAAAAAAAAAAZt7ju23qIz7uDDG+FtF5vmNNir286Ym9AAAAAAAAAACA7Hc9KdrWPrBWzTymScO+HXFxPfieyboAAAAAAAAAADOHEjyjrLA/hkU5PvS1pr4uqSa8QfolvQAAAAAAAAAATe1GPdppSz5+A1I9iSaZvj4Bxz0WbOU6AAAAAAAAAACaifu8IQaZvEAMc7zTyDY9k4EIPjpfDL4AAIA/AACAPzN/Pb2S93c+cidGP6sf9L42qfk9JtIRPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFYv8IiTuMAWyUS8WMAXSUR0DBYDHzYmLMdX2UKGgGR0Bv7RGKAJ9iaAdL8GgIR0DBYDebLEDRdX2UKGgGR0BxQlLSNOuaaAdL3WgIR0DBYFoWFev7dX2UKGgGR0BynvO7g88taAdL2mgIR0DBYHREhJRPdX2UKGgGR0BzGoo8ZDRdaAdNFgFoCEdAwWB+nwXqJXV9lChoBkdAcfHwW3z+WGgHS9xoCEdAwWCNUjLSu3V9lChoBkdAc3LKHO8kEGgHS+ZoCEdAwWCc7vG6w3V9lChoBkdAbmGgB91EE2gHS/BoCEdAwWCn75VOsXV9lChoBkdAcZA83++/QGgHS/VoCEdAwWC5LPldT3V9lChoBkdAcQ3814xDcGgHS8NoCEdAwWC9VWjoIXV9lChoBkdAcgSjWTX8O2gHS9hoCEdAwWDQbPQfIXV9lChoBkdAcwL7bcoH9mgHS+poCEdAwWDW/bj943V9lChoBkdAcImH0K7ZnWgHS/FoCEdAwWDdu5z5oHV9lChoBkdAcf77cO9WZWgHS9xoCEdAwWDq5IYm9nV9lChoBkdAchzrt3OfNGgHS/9oCEdAwWDr0fYBeXV9lChoBkdAcjdSrYGt62gHTQ0BaAhHQMFg8YW1twd1fZQoaAZHQHELBPoFFDxoB0v0aAhHQMFg9xrzoU11fZQoaAZHQHIdP/echDBoB0v1aAhHQMFhIM5n14B1fZQoaAZHQHEHNEkSmIloB0vFaAhHQMFhLGOU+s51fZQoaAZHQHDuY4MnZ01oB0vXaAhHQMFhLQo1DSh1fZQoaAZHQHJpnjyWiURoB0vXaAhHQMFhVj3mFJx1fZQoaAZHQHE47bQC0WxoB00ZAWgIR0DBYVuRHPNWdX2UKGgGR0BwWr5oGpuNaAdNCAFoCEdAwWF4woLG73V9lChoBkdAcXSsC1Z1WGgHS8xoCEdAwWF/ilzltHV9lChoBkdAc2hMj/uLJmgHS/FoCEdAwWGA2uPmxXV9lChoBkdAb6wLNwBHTmgHS+5oCEdAwWGCmE4//3V9lChoBkdActsShrWRR2gHS9FoCEdAwWGKsOoYN3V9lChoBkdAcvXAVwgkkmgHS+hoCEdAwWGP9tuUEHV9lChoBkdAci3edkJ8fGgHS9JoCEdAwWGYZ2pyZXV9lChoBkdARqk+zMRpUWgHS4xoCEdAwWGZf2K2rnV9lChoBkdAcjw8LKFIu2gHS8loCEdAwWGcp1ie/nV9lChoBkdAb5W7I1cdHWgHS9JoCEdAwWGdxlxwQ3V9lChoBkdAcSc0fozN2WgHS/VoCEdAwWGvbypaR3V9lChoBkdAcsSjL0SRKmgHS9doCEdAwWJdQHAymHV9lChoBkdAcw7Fkxyn1mgHS/toCEdAwWJ50XgtOHV9lChoBkdAciGVKf4AS2gHS91oCEdAwWKQFGG21HV9lChoBkdAc2IMIeHSGGgHS8ZoCEdAwWKwFXaJynV9lChoBkdAcEmEdNnGsGgHS/NoCEdAwWK07QswtnV9lChoBkdAb8Vs+mm+CmgHS+9oCEdAwWLljvNNanV9lChoBkdAb6Hio86mwmgHS9doCEdAwWLwjTrmhnV9lChoBkdAcWhAaNuLrGgHS91oCEdAwWL+tGus93V9lChoBkdAcbyOO801qGgHTQ4BaAhHQMFjApbt7a91fZQoaAZHQHFQ4NutOmBoB0v8aAhHQMFjD42jwhJ1fZQoaAZHQHI4bqdH2AZoB00KAWgIR0DBYxfHFPzndX2UKGgGR0BwmKpuMuOCaAdNGwFoCEdAwWMcT7EYO3V9lChoBkdAcoc/Mnqmj2gHS/RoCEdAwWMd9tMwlHV9lChoBkdAcTo/t6X0G2gHTQIBaAhHQMFjJBCMPz51fZQoaAZHQG7T+RPoFFFoB0v0aAhHQMFjN0EPlMh1fZQoaAZHQGBBneSB9ThoB03oA2gIR0DBYz0hib2EdX2UKGgGR0ByED+kxh2GaAdLxWgIR0DBY2krupjudX2UKGgGR0Byy+9rXUYsaAdL7WgIR0DBY2zMV1wHdX2UKGgGR0Bzelf2K2roaAdL42gIR0DBY6ImkWRBdX2UKGgGR0ByLCKR+z+naAdL5GgIR0DBY8bRIBikdX2UKGgGR0BwAahsZYPoaAdL0GgIR0DBY+hdOZb7dX2UKGgGR0BySg7xNIsiaAdLyGgIR0DBY/DSJCSidX2UKGgGR0BytPedkJ8faAdNCwFoCEdAwWP39deIEnV9lChoBkdAco6GX5WRzWgHS+9oCEdAwWQGnAqNInV9lChoBkdAccTMUypJgGgHS8loCEdAwWQN79AHFHV9lChoBkdAb43W07bL2mgHS+VoCEdAwWQor+5vtXV9lChoBkdAcbj1Z1V5r2gHS8RoCEdAwWQtW1+iJ3V9lChoBkdAcHSsguAZsWgHTQcBaAhHQMFkOvKuB+Z1fZQoaAZHQHH/etCAtnRoB0vUaAhHQMFkOvSUkfN1fZQoaAZHQG7SAmZ3LV5oB0v0aAhHQMFkQBGhEjR1fZQoaAZHQHMzdDMNc4ZoB00NAWgIR0DBZE/gzguRdX2UKGgGR0Bxm2HO8kD7aAdNCQFoCEdAwWRf2r4nGHV9lChoBkdAc5tHGS6lL2gHS/VoCEdAwWSaAoXsPnV9lChoBkdAca0Ahje9BmgHTQ0BaAhHQMFkrwEIPbx1fZQoaAZHQHH5OuFHrhRoB0vsaAhHQMFku+9i+cp1fZQoaAZHQGz1kk8ifQNoB0vWaAhHQMFkwUPH1e11fZQoaAZHQHGWZDArQPZoB0vKaAhHQMFk3mL9/Bp1fZQoaAZHQHKQrtzCDVZoB0vwaAhHQMFk6zUqhDh1fZQoaAZHQHKHNbcGkepoB0vsaAhHQMFk7NaY/ml1fZQoaAZHQHB/x/y5I6NoB0vYaAhHQMFk7trCWNZ1fZQoaAZHQHJnuxwAEMdoB0v2aAhHQMFk+KVY6n11fZQoaAZHQHCSPUSZjQRoB0vYaAhHQMFlAvi97F91fZQoaAZHQHCNFNHpbEBoB0vZaAhHQMFlDPR7Z391fZQoaAZHQHMRQNCqp99oB00BAWgIR0DBZSGx2SuAdX2UKGgGR0BuGKv3ai9JaAdL0WgIR0DBZSEmY0EYdX2UKGgGR0ByWdcQiA2AaAdL+mgIR0DBZSegte2NdX2UKGgGR0BxI5JyyUs4aAdL9GgIR0DBZTIw22ofdX2UKGgGR0BxgVdpqREGaAdNCAFoCEdAwWU2wnpjc3V9lChoBkdAcguX9zfaYmgHS9hoCEdAwWVccDr7f3V9lChoBkdAcnn0qYqoZWgHS/xoCEdAwWVo4LkS3HV9lChoBkdAcsKNy5qdpmgHS95oCEdAwWVtvCuU2XV9lChoBkdAcvAG0NSZSmgHS/FoCEdAwWWDKkEcKnV9lChoBkdAcFK9ugpSaWgHS89oCEdAwWWEavRqoXV9lChoBkdAcvoJWvKU3WgHS8doCEdAwWWN1Hvtt3V9lChoBkdAcPzchC+lCWgHS9FoCEdAwWWSf4AS4HV9lChoBkdAcapHhCMP0GgHS/BoCEdAwWWs0v4/NnV9lChoBkdAc10thd+ocmgHS+VoCEdAwWXGsasIV3V9lChoBkdAcgefzBhx52gHTQYBaAhHQMFlzrOAy2x1fZQoaAZHQHJYcnuy/sVoB0v8aAhHQMFl0XkHUtt1fZQoaAZHQHJR4GIKtxNoB0vRaAhHQMFl0wj+rEN1fZQoaAZHQHHMP1DjR2NoB0vkaAhHQMFl3D4xk/d1fZQoaAZHQHI/f/FR51NoB0vWaAhHQMFl5IHcDbJ1fZQoaAZHQHMCN0A93bFoB0viaAhHQMFl6JzDGcZ1fZQoaAZHQHIauD8LropoB0v+aAhHQMFl7chC+lF1fZQoaAZHQHFNnjIaLn9oB0vdaAhHQMFmIAogFHJ1fZQoaAZHQHI+tRrJr+JoB0voaAhHQMFmJHaFmFt1fZQoaAZHQHApx6fJ3gVoB0vaaAhHQMFmNGfwqiJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 264, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1818d34ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1818d34f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1818d35000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1818d35090>", "_build": "<function ActorCriticPolicy._build at 0x7f1818d35120>", "forward": "<function ActorCriticPolicy.forward at 0x7f1818d351b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1818d35240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1818d352d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1818d35360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1818d353f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1818d35480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1818d35510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1818d26980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686855136171998882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1k7t7spm6O0DkuLfayrN5fkW6p9IDOAAAgD8AAIA/TaxpvSSfWjzmWSk9d5SsvodRBb17kWE9AAAAAAAAAACa4aM7zxUDvHirEr30RAY9STtJPRa+DzoAAIA/AACAPxp6TT2Hy7s+ZVYbvHtYM7+IPRQ+y907vQAAAAAAAAAAAMBDO78OtT9O5Jo+jn4jPg5hYrtdV4y9AAAAAAAAAADa4r+9AQlSPmYxWjuAkwi/LkAFvVTWIDoAAAAAAAAAAGZsqr2NbRc+xwInPlBK1L4GgiI9drW/PAAAAAAAAAAAZtNpvfacV7qW+Za1hfygsAChaLoSN7M0AACAPwAAgD+aps28w/VOui7bxjacW4oxjS0uuzKx7LUAAIA/AACAPzOtQrwjAkI/moSlvXcSTL/Lbzw97OOjvAAAAAAAAAAAbUkSvl+xoz4Fkhg+dxANv+9Mfr1y7+c9AAAAAAAAAADgEG8+A/1kP8s85TzuQxK/lUn2PuaSq70AAAAAAAAAAADMtrtIAdS4IIl0Os3wsDIfwU67YKaTuQAAgD8AAIA/ik6FvnI2Lz8IP1k9gTERv0cC9L4lO3s+AAAAAAAAAADm0B49QACkP10VzT55ujq/arm4PDcsRj4AAAAAAAAAAOZn4r1PeaU/p8opv/VZCb8mZZ69hhbBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAobE9+w1SMAWyUS72MAXSUR0Clm7sqBmPHdX2UKGgGR0Bzf032mHgxaAdLyGgIR0Clm+UdzXBhdX2UKGgGR0ByXSx/ustDaAdL1GgIR0Clm/W4Vh1DdX2UKGgGR0BzbHoC+10DaAdL1WgIR0ClnAn2IwdsdX2UKGgGR0BySkWWQfZFaAdLvmgIR0ClnBlrEcbSdX2UKGgGR0By0OY7aIvbaAdL4GgIR0ClnDoMSbpedX2UKGgGR0BywDqX4TK1aAdL0WgIR0ClnFGSQo1DdX2UKGgGR0BBiYYJmdy1aAdLfWgIR0ClnG/SQYDUdX2UKGgGR0Bv2MtK7I1caAdLy2gIR0ClnI9pyp71dX2UKGgGR0BvkNUXHim3aAdLuGgIR0ClnIyYoiLVdX2UKGgGR0Byhf/io86naAdLz2gIR0ClnJposZpBdX2UKGgGR0BS0qcmShalaAdLbGgIR0ClnR4qwyIpdX2UKGgGR0BxoTtAs053aAdLqWgIR0ClnT0ornTzdX2UKGgGR0ByhabhFVkuaAdLwGgIR0ClnTg1NxlydX2UKGgGR0BzRRFnZkCnaAdL7mgIR0ClnVmaH9FXdX2UKGgGR0By95x7zCk5aAdLxGgIR0ClnWysCDEndX2UKGgGR0BwpEtNBWxRaAdLqWgIR0CltJjhLoOhdX2UKGgGR0ByTSmhufmLaAdL2WgIR0CltO5Jsfq5dX2UKGgGR0BzovKDCgscaAdLwWgIR0CltQMB6rvLdX2UKGgGR0ByZYhRqGlAaAdLpGgIR0CltR30oSctdX2UKGgGR0Bya3M8ox5+aAdLlGgIR0CltTYtpVS5dX2UKGgGR0BygHYh+vyLaAdLv2gIR0CltTAH3UQTdX2UKGgGR0ByNW6TW5H3aAdLvmgIR0CltUwHiWE9dX2UKGgGR0BvAfSpiqhlaAdLp2gIR0CltUetjkMkdX2UKGgGR0BwhXwOOKfnaAdLzmgIR0CltUrpRoAXdX2UKGgGR0Bzy564UeuFaAdLuWgIR0CltZPA44p+dX2UKGgGR0ByLwETxoZiaAdLwWgIR0CltbTPjXFtdX2UKGgGR0Bwb+n4wh4daAdLsGgIR0CltiN21UlzdX2UKGgGR0ByM/zOHFglaAdLyWgIR0Cltkz/6wdKdX2UKGgGR0ByVaJxeb/faAdLw2gIR0CltlYptrKvdX2UKGgGR0BxRN+KCQLeaAdLxmgIR0CltpNx2jfvdX2UKGgGR0ByhXBO58SgaAdLyWgIR0Cltoiojv/jdX2UKGgGR0Bx/1l6JIlMaAdLv2gIR0CltqIVdonKdX2UKGgGR0BykGe+VTrFaAdLp2gIR0CltuERSP2gdX2UKGgGR0BvEvMSsbNsaAdLo2gIR0CltwVUVBUrdX2UKGgGR0BzIphE0BOpaAdLvWgIR0CltzYjjaPCdX2UKGgGR0By7dWo3rD7aAdL0GgIR0CltzkkrwvydX2UKGgGR0Bw1kPd2xIKaAdLxGgIR0Clt0Mu3+dcdX2UKGgGR0ByGrlT3qRmaAdLyWgIR0Clt20Gu9vkdX2UKGgGR0ByfUG+sYEXaAdLsGgIR0Clt3XQUpNLdX2UKGgGR0B0NEwRGtp3aAdL72gIR0Clt3uryUcGdX2UKGgGR0B0IYqI7/4qaAdL12gIR0Clt432mHgxdX2UKGgGR0BxE7sF+uvEaAdLsGgIR0CluAMK9f1IdX2UKGgGR0BvceGqPwNLaAdLrWgIR0CluGnzQNTcdX2UKGgGR0BymK0rsjVyaAdLw2gIR0CluGsnqmj1dX2UKGgGR0BxnbGXHBDYaAdL2WgIR0CluKWSlnAZdX2UKGgGR0ByWSE384xUaAdLxmgIR0CluKsMiKR/dX2UKGgGR0Bu0avcJtzkaAdLrWgIR0CluOqbjLjhdX2UKGgGR0BxkbozN2TxaAdLxWgIR0CluQ1donKGdX2UKGgGR0BPW1gQYk3TaAdLj2gIR0CluSgVoHs1dX2UKGgGR0BwphDArQPaaAdL6WgIR0CluTFwDNhWdX2UKGgGR0BytBrftQbdaAdLpGgIR0CluUD3mFJydX2UKGgGR0Bvq4kLQXyiaAdLtGgIR0CluUVCojwAdX2UKGgGR0BzRRLQHAymaAdLu2gIR0CluU9o371qdX2UKGgGR0BzIj5oGpuNaAdLsmgIR0CluXrNfPX1dX2UKGgGR0ByWqxoqTbGaAdL52gIR0CluckN4JNTdX2UKGgGR0Bztu9DhLoPaAdL72gIR0Cluib2USqVdX2UKGgGR0Bx8w0SAYpEaAdLzGgIR0ClumGhVU++dX2UKGgGR0Bx90aBI4EPaAdLwmgIR0ClurneSB9UdX2UKGgGR0ByPdHd43WGaAdNwgFoCEdApbrEHUtqYnV9lChoBkdAc0CU7jkuH2gHS8doCEdApbrLbah6B3V9lChoBkdAcQq7JGOMl2gHS7ZoCEdApbrWcDr7f3V9lChoBkdAckSzKs+3Y2gHS8hoCEdApbsEynDR+nV9lChoBkdAcBnZuQ6p52gHS7NoCEdApbsrd56dD3V9lChoBkdAcpCj5bhWHWgHS8doCEdApbtDsWweNnV9lChoBkdAcmcqqOtGNWgHS7hoCEdApbt2pKjBVXV9lChoBkdAcrTiH6/IsGgHS8JoCEdApbuFTisGPnV9lChoBkdAceo4k/r0KGgHS81oCEdApbukIPbwjXV9lChoBkdAcrpgUlAu7GgHS9xoCEdApbuzU7Sy+3V9lChoBkdAc3wXT3IuG2gHS9poCEdApbu1psXSB3V9lChoBkdAckZ065oXbmgHS95oCEdApbv+Hi3ocXV9lChoBkdAcFpRigCfYmgHS8ZoCEdApbwIoTfzjHV9lChoBkdAcJhJRwZOz2gHS69oCEdApbwal+EytXV9lChoBkdAcju5myxA0WgHS5VoCEdApbxSA+Y+jnV9lChoBkdAczPWmxdIG2gHS8poCEdApbyPhESdv3V9lChoBkdAcnwveP7vX2gHS7RoCEdApbyZWLgn+nV9lChoBkdAcQR67dznzWgHS79oCEdApbzB1PnB+HV9lChoBkdAcqpbF0gbImgHS8FoCEdApbzQm9g4O3V9lChoBkdAclPkzGgi/2gHS7hoCEdApbzjYmLLp3V9lChoBkdAcHZCUornT2gHS7doCEdApb0DkyULUnV9lChoBkdAbx5solUp/mgHS6poCEdApb0zTtsvZnV9lChoBkdAb2Ygq3EycmgHS51oCEdApb1D70nPV3V9lChoBkdAcgV0a6z3RGgHS89oCEdApb1aQLeANHV9lChoBkdAcU/DLKV6eGgHS8FoCEdApb1jXg9/0HV9lChoBkdAcaMhbGFSKmgHS75oCEdApb2Z+SbH63V9lChoBkdAclXDMvAXVWgHS6xoCEdApb3ArJ8v3HV9lChoBkdAc1O6Hj6vaGgHS89oCEdApb21N5+pfnV9lChoBkdAcN3MOPNmlWgHS6loCEdApb3L9MsYmHV9lChoBkdAcvBM4LkS3GgHS8ZoCEdApb5Kguh9LHV9lChoBkdAcJmWw/xDs2gHS55oCEdApb5V0tAcDXV9lChoBkdAb2eOwPiDNGgHS7xoCEdApb5xoXbdrXV9lChoBkdAc/xUlAu7H2gHS/hoCEdApb53fuTibXV9lChoBkdAcLwsOXmeUmgHS6JoCEdApb6EZeiSJXV9lChoBkdAc30dFOO802gHS9xoCEdApb7Q9Net0XV9lChoBkdAcSm2tMfzSWgHS8loCEdApb7ZBomG/XV9lChoBkdAcK0iiZfD12gHS7toCEdApb7qZSeiBXV9lChoBkdAcESfQa72+WgHS7NoCEdApb8Valk6LnV9lChoBkdAcU7zKcNH6WgHS71oCEdApb9N3wCr93V9lChoBkdAccR0mtyPuGgHS9ZoCEdApb9iTINmUXV9lChoBkdActvVNpM6BGgHS9RoCEdApb+BElVtGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:557a21a510a69521e18c79c9f334abfd283108e66c1963989ec3279015d45888
3
- size 146650
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6893ec0c5e7f2fe9e1a7163f935382d9ac03e48e428660083f16dd42bb6709b
3
+ size 146178
ppo-LunarLander-v2/data CHANGED
@@ -4,57 +4,72 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4c0923a290>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4c0923a320>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4c0923a3b0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4c0923a440>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f4c0923a4d0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f4c0923a560>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4c0923a5f0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4c0923a680>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f4c0923a710>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4c0923a7a0>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4c0923a830>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4c0923a8c0>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f4c09232580>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 5013504,
25
- "_total_timesteps": 5000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1687039138661581966,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDqDL6uErI+Rr5+PhWpyL7GI489fKuUPQAAAAAAAAAAwLWnPRcmVz7ZGbK9s8huvvfH4Ty3wI+9AAAAAAAAAAAA/jY8rmfxulu+kLxTfI08eTEivKvndD0AAIA/AACAP6YVEr50ZQA/Tn6DPpnswb7DeZE8YQ+vPQAAAAAAAAAAoD8Dvop0uj87f/q+/q9lvhUhWr4CH6S+AAAAAAAAAADN/ao84WCKuoHXjzhDmoEzMlRYuh46p7cAAIA/AACAP81YnzspIFe6taDCtzGHzLIeiLA6pqzkNgAAgD8AAIA/gPUVPotH7D3lzj6+uphUvlfBXz2dYi08AAAAAAAAAABGSz2+sVODP6StAb+gD/G+3nuRvqTPqb4AAAAAAAAAAHNctD1UgIc+oCK8vZPKpr50fXY9hdF/PQAAAAAAAAAAZt7ju23qIz7uDDG+FtF5vmNNir286Ym9AAAAAAAAAACA7Hc9KdrWPrBWzTymScO+HXFxPfieyboAAAAAAAAAADOHEjyjrLA/hkU5PvS1pr4uqSa8QfolvQAAAAAAAAAATe1GPdppSz5+A1I9iSaZvj4Bxz0WbOU6AAAAAAAAAACaifu8IQaZvEAMc7zTyDY9k4EIPjpfDL4AAIA/AACAPzN/Pb2S93c+cidGP6sf9L42qfk9JtIRPwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.0027007999999999477,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEFYv8IiTuMAWyUS8WMAXSUR0DBYDHzYmLMdX2UKGgGR0Bv7RGKAJ9iaAdL8GgIR0DBYDebLEDRdX2UKGgGR0BxQlLSNOuaaAdL3WgIR0DBYFoWFev7dX2UKGgGR0BynvO7g88taAdL2mgIR0DBYHREhJRPdX2UKGgGR0BzGoo8ZDRdaAdNFgFoCEdAwWB+nwXqJXV9lChoBkdAcfHwW3z+WGgHS9xoCEdAwWCNUjLSu3V9lChoBkdAc3LKHO8kEGgHS+ZoCEdAwWCc7vG6w3V9lChoBkdAbmGgB91EE2gHS/BoCEdAwWCn75VOsXV9lChoBkdAcZA83++/QGgHS/VoCEdAwWC5LPldT3V9lChoBkdAcQ3814xDcGgHS8NoCEdAwWC9VWjoIXV9lChoBkdAcgSjWTX8O2gHS9hoCEdAwWDQbPQfIXV9lChoBkdAcwL7bcoH9mgHS+poCEdAwWDW/bj943V9lChoBkdAcImH0K7ZnWgHS/FoCEdAwWDdu5z5oHV9lChoBkdAcf77cO9WZWgHS9xoCEdAwWDq5IYm9nV9lChoBkdAchzrt3OfNGgHS/9oCEdAwWDr0fYBeXV9lChoBkdAcjdSrYGt62gHTQ0BaAhHQMFg8YW1twd1fZQoaAZHQHELBPoFFDxoB0v0aAhHQMFg9xrzoU11fZQoaAZHQHIdP/echDBoB0v1aAhHQMFhIM5n14B1fZQoaAZHQHEHNEkSmIloB0vFaAhHQMFhLGOU+s51fZQoaAZHQHDuY4MnZ01oB0vXaAhHQMFhLQo1DSh1fZQoaAZHQHJpnjyWiURoB0vXaAhHQMFhVj3mFJx1fZQoaAZHQHE47bQC0WxoB00ZAWgIR0DBYVuRHPNWdX2UKGgGR0BwWr5oGpuNaAdNCAFoCEdAwWF4woLG73V9lChoBkdAcXSsC1Z1WGgHS8xoCEdAwWF/ilzltHV9lChoBkdAc2hMj/uLJmgHS/FoCEdAwWGA2uPmxXV9lChoBkdAb6wLNwBHTmgHS+5oCEdAwWGCmE4//3V9lChoBkdActsShrWRR2gHS9FoCEdAwWGKsOoYN3V9lChoBkdAcvXAVwgkkmgHS+hoCEdAwWGP9tuUEHV9lChoBkdAci3edkJ8fGgHS9JoCEdAwWGYZ2pyZXV9lChoBkdARqk+zMRpUWgHS4xoCEdAwWGZf2K2rnV9lChoBkdAcjw8LKFIu2gHS8loCEdAwWGcp1ie/nV9lChoBkdAb5W7I1cdHWgHS9JoCEdAwWGdxlxwQ3V9lChoBkdAcSc0fozN2WgHS/VoCEdAwWGvbypaR3V9lChoBkdAcsSjL0SRKmgHS9doCEdAwWJdQHAymHV9lChoBkdAcw7Fkxyn1mgHS/toCEdAwWJ50XgtOHV9lChoBkdAciGVKf4AS2gHS91oCEdAwWKQFGG21HV9lChoBkdAc2IMIeHSGGgHS8ZoCEdAwWKwFXaJynV9lChoBkdAcEmEdNnGsGgHS/NoCEdAwWK07QswtnV9lChoBkdAb8Vs+mm+CmgHS+9oCEdAwWLljvNNanV9lChoBkdAb6Hio86mwmgHS9doCEdAwWLwjTrmhnV9lChoBkdAcWhAaNuLrGgHS91oCEdAwWL+tGus93V9lChoBkdAcbyOO801qGgHTQ4BaAhHQMFjApbt7a91fZQoaAZHQHFQ4NutOmBoB0v8aAhHQMFjD42jwhJ1fZQoaAZHQHI4bqdH2AZoB00KAWgIR0DBYxfHFPzndX2UKGgGR0BwmKpuMuOCaAdNGwFoCEdAwWMcT7EYO3V9lChoBkdAcoc/Mnqmj2gHS/RoCEdAwWMd9tMwlHV9lChoBkdAcTo/t6X0G2gHTQIBaAhHQMFjJBCMPz51fZQoaAZHQG7T+RPoFFFoB0v0aAhHQMFjN0EPlMh1fZQoaAZHQGBBneSB9ThoB03oA2gIR0DBYz0hib2EdX2UKGgGR0ByED+kxh2GaAdLxWgIR0DBY2krupjudX2UKGgGR0Byy+9rXUYsaAdL7WgIR0DBY2zMV1wHdX2UKGgGR0Bzelf2K2roaAdL42gIR0DBY6ImkWRBdX2UKGgGR0ByLCKR+z+naAdL5GgIR0DBY8bRIBikdX2UKGgGR0BwAahsZYPoaAdL0GgIR0DBY+hdOZb7dX2UKGgGR0BySg7xNIsiaAdLyGgIR0DBY/DSJCSidX2UKGgGR0BytPedkJ8faAdNCwFoCEdAwWP39deIEnV9lChoBkdAco6GX5WRzWgHS+9oCEdAwWQGnAqNInV9lChoBkdAccTMUypJgGgHS8loCEdAwWQN79AHFHV9lChoBkdAb43W07bL2mgHS+VoCEdAwWQor+5vtXV9lChoBkdAcbj1Z1V5r2gHS8RoCEdAwWQtW1+iJ3V9lChoBkdAcHSsguAZsWgHTQcBaAhHQMFkOvKuB+Z1fZQoaAZHQHH/etCAtnRoB0vUaAhHQMFkOvSUkfN1fZQoaAZHQG7SAmZ3LV5oB0v0aAhHQMFkQBGhEjR1fZQoaAZHQHMzdDMNc4ZoB00NAWgIR0DBZE/gzguRdX2UKGgGR0Bxm2HO8kD7aAdNCQFoCEdAwWRf2r4nGHV9lChoBkdAc5tHGS6lL2gHS/VoCEdAwWSaAoXsPnV9lChoBkdAca0Ahje9BmgHTQ0BaAhHQMFkrwEIPbx1fZQoaAZHQHH5OuFHrhRoB0vsaAhHQMFku+9i+cp1fZQoaAZHQGz1kk8ifQNoB0vWaAhHQMFkwUPH1e11fZQoaAZHQHGWZDArQPZoB0vKaAhHQMFk3mL9/Bp1fZQoaAZHQHKQrtzCDVZoB0vwaAhHQMFk6zUqhDh1fZQoaAZHQHKHNbcGkepoB0vsaAhHQMFk7NaY/ml1fZQoaAZHQHB/x/y5I6NoB0vYaAhHQMFk7trCWNZ1fZQoaAZHQHJnuxwAEMdoB0v2aAhHQMFk+KVY6n11fZQoaAZHQHCSPUSZjQRoB0vYaAhHQMFlAvi97F91fZQoaAZHQHCNFNHpbEBoB0vZaAhHQMFlDPR7Z391fZQoaAZHQHMRQNCqp99oB00BAWgIR0DBZSGx2SuAdX2UKGgGR0BuGKv3ai9JaAdL0WgIR0DBZSEmY0EYdX2UKGgGR0ByWdcQiA2AaAdL+mgIR0DBZSegte2NdX2UKGgGR0BxI5JyyUs4aAdL9GgIR0DBZTIw22ofdX2UKGgGR0BxgVdpqREGaAdNCAFoCEdAwWU2wnpjc3V9lChoBkdAcguX9zfaYmgHS9hoCEdAwWVccDr7f3V9lChoBkdAcnn0qYqoZWgHS/xoCEdAwWVo4LkS3HV9lChoBkdAcsKNy5qdpmgHS95oCEdAwWVtvCuU2XV9lChoBkdAcvAG0NSZSmgHS/FoCEdAwWWDKkEcKnV9lChoBkdAcFK9ugpSaWgHS89oCEdAwWWEavRqoXV9lChoBkdAcvoJWvKU3WgHS8doCEdAwWWN1Hvtt3V9lChoBkdAcPzchC+lCWgHS9FoCEdAwWWSf4AS4HV9lChoBkdAcapHhCMP0GgHS/BoCEdAwWWs0v4/NnV9lChoBkdAc10thd+ocmgHS+VoCEdAwWXGsasIV3V9lChoBkdAcgefzBhx52gHTQYBaAhHQMFlzrOAy2x1fZQoaAZHQHJYcnuy/sVoB0v8aAhHQMFl0XkHUtt1fZQoaAZHQHJR4GIKtxNoB0vRaAhHQMFl0wj+rEN1fZQoaAZHQHHMP1DjR2NoB0vkaAhHQMFl3D4xk/d1fZQoaAZHQHI/f/FR51NoB0vWaAhHQMFl5IHcDbJ1fZQoaAZHQHMCN0A93bFoB0viaAhHQMFl6JzDGcZ1fZQoaAZHQHIauD8LropoB0v+aAhHQMFl7chC+lF1fZQoaAZHQHFNnjIaLn9oB0vdaAhHQMFmIAogFHJ1fZQoaAZHQHI+tRrJr+JoB0voaAhHQMFmJHaFmFt1fZQoaAZHQHApx6fJ3gVoB0vaaAhHQMFmNGfwqiJ1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 1224,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
- ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
  "dtype": "float32",
59
  "bounded_below": "[ True True True True True True True True]",
60
  "bounded_above": "[ True True True True True True True True]",
@@ -69,7 +84,7 @@
69
  },
70
  "action_space": {
71
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
- ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
  "n": "4",
74
  "start": "0",
75
  "_shape": [],
@@ -77,21 +92,6 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 1024,
81
- "gamma": 0.999,
82
- "gae_lambda": 0.98,
83
- "ent_coef": 0.01,
84
- "vf_coef": 0.5,
85
- "max_grad_norm": 0.5,
86
- "batch_size": 264,
87
- "n_epochs": 4,
88
- "clip_range": {
89
- ":type:": "<class 'function'>",
90
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
- },
92
- "clip_range_vf": null,
93
- "normalize_advantage": true,
94
- "target_kl": null,
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1818d34ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1818d34f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1818d35000>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1818d35090>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1818d35120>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1818d351b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1818d35240>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1818d352d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1818d35360>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1818d353f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1818d35480>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1818d35510>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f1818d26980>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1686855136171998882,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo1k7t7spm6O0DkuLfayrN5fkW6p9IDOAAAgD8AAIA/TaxpvSSfWjzmWSk9d5SsvodRBb17kWE9AAAAAAAAAACa4aM7zxUDvHirEr30RAY9STtJPRa+DzoAAIA/AACAPxp6TT2Hy7s+ZVYbvHtYM7+IPRQ+y907vQAAAAAAAAAAAMBDO78OtT9O5Jo+jn4jPg5hYrtdV4y9AAAAAAAAAADa4r+9AQlSPmYxWjuAkwi/LkAFvVTWIDoAAAAAAAAAAGZsqr2NbRc+xwInPlBK1L4GgiI9drW/PAAAAAAAAAAAZtNpvfacV7qW+Za1hfygsAChaLoSN7M0AACAPwAAgD+aps28w/VOui7bxjacW4oxjS0uuzKx7LUAAIA/AACAPzOtQrwjAkI/moSlvXcSTL/Lbzw97OOjvAAAAAAAAAAAbUkSvl+xoz4Fkhg+dxANv+9Mfr1y7+c9AAAAAAAAAADgEG8+A/1kP8s85TzuQxK/lUn2PuaSq70AAAAAAAAAAADMtrtIAdS4IIl0Os3wsDIfwU67YKaTuQAAgD8AAIA/ik6FvnI2Lz8IP1k9gTERv0cC9L4lO3s+AAAAAAAAAADm0B49QACkP10VzT55ujq/arm4PDcsRj4AAAAAAAAAAOZn4r1PeaU/p8opv/VZCb8mZZ69hhbBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAABAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAobE9+w1SMAWyUS72MAXSUR0Clm7sqBmPHdX2UKGgGR0Bzf032mHgxaAdLyGgIR0Clm+UdzXBhdX2UKGgGR0ByXSx/ustDaAdL1GgIR0Clm/W4Vh1DdX2UKGgGR0BzbHoC+10DaAdL1WgIR0ClnAn2IwdsdX2UKGgGR0BySkWWQfZFaAdLvmgIR0ClnBlrEcbSdX2UKGgGR0By0OY7aIvbaAdL4GgIR0ClnDoMSbpedX2UKGgGR0BywDqX4TK1aAdL0WgIR0ClnFGSQo1DdX2UKGgGR0BBiYYJmdy1aAdLfWgIR0ClnG/SQYDUdX2UKGgGR0Bv2MtK7I1caAdLy2gIR0ClnI9pyp71dX2UKGgGR0BvkNUXHim3aAdLuGgIR0ClnIyYoiLVdX2UKGgGR0Byhf/io86naAdLz2gIR0ClnJposZpBdX2UKGgGR0BS0qcmShalaAdLbGgIR0ClnR4qwyIpdX2UKGgGR0BxoTtAs053aAdLqWgIR0ClnT0ornTzdX2UKGgGR0ByhabhFVkuaAdLwGgIR0ClnTg1NxlydX2UKGgGR0BzRRFnZkCnaAdL7mgIR0ClnVmaH9FXdX2UKGgGR0By95x7zCk5aAdLxGgIR0ClnWysCDEndX2UKGgGR0BwpEtNBWxRaAdLqWgIR0CltJjhLoOhdX2UKGgGR0ByTSmhufmLaAdL2WgIR0CltO5Jsfq5dX2UKGgGR0BzovKDCgscaAdLwWgIR0CltQMB6rvLdX2UKGgGR0ByZYhRqGlAaAdLpGgIR0CltR30oSctdX2UKGgGR0Bya3M8ox5+aAdLlGgIR0CltTYtpVS5dX2UKGgGR0BygHYh+vyLaAdLv2gIR0CltTAH3UQTdX2UKGgGR0ByNW6TW5H3aAdLvmgIR0CltUwHiWE9dX2UKGgGR0BvAfSpiqhlaAdLp2gIR0CltUetjkMkdX2UKGgGR0BwhXwOOKfnaAdLzmgIR0CltUrpRoAXdX2UKGgGR0Bzy564UeuFaAdLuWgIR0CltZPA44p+dX2UKGgGR0ByLwETxoZiaAdLwWgIR0CltbTPjXFtdX2UKGgGR0Bwb+n4wh4daAdLsGgIR0CltiN21UlzdX2UKGgGR0ByM/zOHFglaAdLyWgIR0Cltkz/6wdKdX2UKGgGR0ByVaJxeb/faAdLw2gIR0CltlYptrKvdX2UKGgGR0BxRN+KCQLeaAdLxmgIR0CltpNx2jfvdX2UKGgGR0ByhXBO58SgaAdLyWgIR0Cltoiojv/jdX2UKGgGR0Bx/1l6JIlMaAdLv2gIR0CltqIVdonKdX2UKGgGR0BykGe+VTrFaAdLp2gIR0CltuERSP2gdX2UKGgGR0BvEvMSsbNsaAdLo2gIR0CltwVUVBUrdX2UKGgGR0BzIphE0BOpaAdLvWgIR0CltzYjjaPCdX2UKGgGR0By7dWo3rD7aAdL0GgIR0CltzkkrwvydX2UKGgGR0Bw1kPd2xIKaAdLxGgIR0Clt0Mu3+dcdX2UKGgGR0ByGrlT3qRmaAdLyWgIR0Clt20Gu9vkdX2UKGgGR0ByfUG+sYEXaAdLsGgIR0Clt3XQUpNLdX2UKGgGR0B0NEwRGtp3aAdL72gIR0Clt3uryUcGdX2UKGgGR0B0IYqI7/4qaAdL12gIR0Clt432mHgxdX2UKGgGR0BxE7sF+uvEaAdLsGgIR0CluAMK9f1IdX2UKGgGR0BvceGqPwNLaAdLrWgIR0CluGnzQNTcdX2UKGgGR0BymK0rsjVyaAdLw2gIR0CluGsnqmj1dX2UKGgGR0BxnbGXHBDYaAdL2WgIR0CluKWSlnAZdX2UKGgGR0ByWSE384xUaAdLxmgIR0CluKsMiKR/dX2UKGgGR0Bu0avcJtzkaAdLrWgIR0CluOqbjLjhdX2UKGgGR0BxkbozN2TxaAdLxWgIR0CluQ1donKGdX2UKGgGR0BPW1gQYk3TaAdLj2gIR0CluSgVoHs1dX2UKGgGR0BwphDArQPaaAdL6WgIR0CluTFwDNhWdX2UKGgGR0BytBrftQbdaAdLpGgIR0CluUD3mFJydX2UKGgGR0Bvq4kLQXyiaAdLtGgIR0CluUVCojwAdX2UKGgGR0BzRRLQHAymaAdLu2gIR0CluU9o371qdX2UKGgGR0BzIj5oGpuNaAdLsmgIR0CluXrNfPX1dX2UKGgGR0ByWqxoqTbGaAdL52gIR0CluckN4JNTdX2UKGgGR0Bztu9DhLoPaAdL72gIR0Cluib2USqVdX2UKGgGR0Bx8w0SAYpEaAdLzGgIR0ClumGhVU++dX2UKGgGR0Bx90aBI4EPaAdLwmgIR0ClurneSB9UdX2UKGgGR0ByPdHd43WGaAdNwgFoCEdApbrEHUtqYnV9lChoBkdAc0CU7jkuH2gHS8doCEdApbrLbah6B3V9lChoBkdAcQq7JGOMl2gHS7ZoCEdApbrWcDr7f3V9lChoBkdAckSzKs+3Y2gHS8hoCEdApbsEynDR+nV9lChoBkdAcBnZuQ6p52gHS7NoCEdApbsrd56dD3V9lChoBkdAcpCj5bhWHWgHS8doCEdApbtDsWweNnV9lChoBkdAcmcqqOtGNWgHS7hoCEdApbt2pKjBVXV9lChoBkdAcrTiH6/IsGgHS8JoCEdApbuFTisGPnV9lChoBkdAceo4k/r0KGgHS81oCEdApbukIPbwjXV9lChoBkdAcrpgUlAu7GgHS9xoCEdApbuzU7Sy+3V9lChoBkdAc3wXT3IuG2gHS9poCEdApbu1psXSB3V9lChoBkdAckZ065oXbmgHS95oCEdApbv+Hi3ocXV9lChoBkdAcFpRigCfYmgHS8ZoCEdApbwIoTfzjHV9lChoBkdAcJhJRwZOz2gHS69oCEdApbwal+EytXV9lChoBkdAcju5myxA0WgHS5VoCEdApbxSA+Y+jnV9lChoBkdAczPWmxdIG2gHS8poCEdApbyPhESdv3V9lChoBkdAcnwveP7vX2gHS7RoCEdApbyZWLgn+nV9lChoBkdAcQR67dznzWgHS79oCEdApbzB1PnB+HV9lChoBkdAcqpbF0gbImgHS8FoCEdApbzQm9g4O3V9lChoBkdAclPkzGgi/2gHS7hoCEdApbzjYmLLp3V9lChoBkdAcHZCUornT2gHS7doCEdApb0DkyULUnV9lChoBkdAbx5solUp/mgHS6poCEdApb0zTtsvZnV9lChoBkdAb2Ygq3EycmgHS51oCEdApb1D70nPV3V9lChoBkdAcgV0a6z3RGgHS89oCEdApb1aQLeANHV9lChoBkdAcU/DLKV6eGgHS8FoCEdApb1jXg9/0HV9lChoBkdAcaMhbGFSKmgHS75oCEdApb2Z+SbH63V9lChoBkdAclXDMvAXVWgHS6xoCEdApb3ArJ8v3HV9lChoBkdAc1O6Hj6vaGgHS89oCEdApb21N5+pfnV9lChoBkdAcN3MOPNmlWgHS6loCEdApb3L9MsYmHV9lChoBkdAcvBM4LkS3GgHS8ZoCEdApb5Kguh9LHV9lChoBkdAcJmWw/xDs2gHS55oCEdApb5V0tAcDXV9lChoBkdAb2eOwPiDNGgHS7xoCEdApb5xoXbdrXV9lChoBkdAc/xUlAu7H2gHS/hoCEdApb53fuTibXV9lChoBkdAcLwsOXmeUmgHS6JoCEdApb6EZeiSJXV9lChoBkdAc30dFOO802gHS9xoCEdApb7Q9Net0XV9lChoBkdAcSm2tMfzSWgHS8loCEdApb7ZBomG/XV9lChoBkdAcK0iiZfD12gHS7toCEdApb7qZSeiBXV9lChoBkdAcESfQa72+WgHS7NoCEdApb8Valk6LnV9lChoBkdAcU7zKcNH6WgHS71oCEdApb9N3wCr93V9lChoBkdAccR0mtyPuGgHS9ZoCEdApb9iTINmUXV9lChoBkdActvVNpM6BGgHS9RoCEdApb+BElVtGnVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 1230,
55
+ "n_steps": 1024,
56
+ "gamma": 0.999,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 10,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
  "observation_space": {
71
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
  "dtype": "float32",
74
  "bounded_below": "[ True True True True True True True True]",
75
  "bounded_above": "[ True True True True True True True True]",
 
84
  },
85
  "action_space": {
86
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
  "n": "4",
89
  "start": "0",
90
  "_shape": [],
 
92
  "_np_random": null
93
  },
94
  "n_envs": 16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "lr_schedule": {
96
  ":type:": "<class 'function'>",
97
  ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:516acb3d1d716fb5f1e017431d2d37accd05e28eb8dba85204e4fd062a625e36
3
- size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2689dec5a074eca8ad52c6a4fc4d4480e216ae721a737ec8d84e060b6f03220a
3
+ size 87545
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f184fc106822c8555dd2021ed12dfea27bfcb9c998873e91e43e6cca1c9b2ec7
3
- size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bc1758a278ec911a4be588987a83cc5ad75c7142c51c6025b372ee0c7e3b5c4
3
+ size 43201
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -2,7 +2,7 @@
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
- - GPU Enabled: True
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
 
2
  - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: False
6
  - Numpy: 1.22.4
7
  - Cloudpickle: 2.2.1
8
  - Gymnasium: 0.28.1
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 277.39953603895424, "std_reward": 6.550929590987423, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T23:13:50.699227"}
 
1
+ {"mean_reward": 282.9574660769196, "std_reward": 19.73143580858302, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T23:39:59.281668"}