mukish45's picture
End of training
3e5e0a6
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: finetuned_bert_sentiment_classification
    results: []

finetuned_bert_sentiment_classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9785
  • Accuracy: 0.78

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 68 0.6297 0.73
No log 2.0 136 0.9044 0.73
No log 3.0 204 1.2008 0.78
No log 4.0 272 1.4143 0.75
No log 5.0 340 1.4934 0.76
No log 6.0 408 1.5581 0.765
No log 7.0 476 1.6158 0.78
0.1371 8.0 544 1.6786 0.785
0.1371 9.0 612 1.7112 0.78
0.1371 10.0 680 1.7416 0.78
0.1371 11.0 748 1.7667 0.78
0.1371 12.0 816 1.7937 0.78
0.1371 13.0 884 1.8139 0.78
0.1371 14.0 952 1.8347 0.78
0.0002 15.0 1020 1.8531 0.785
0.0002 16.0 1088 1.8645 0.78
0.0002 17.0 1156 1.8798 0.78
0.0002 18.0 1224 1.8964 0.78
0.0002 19.0 1292 1.9097 0.78
0.0002 20.0 1360 1.9206 0.78
0.0002 21.0 1428 1.9310 0.78
0.0002 22.0 1496 1.9410 0.78
0.0001 23.0 1564 1.9494 0.78
0.0001 24.0 1632 1.9566 0.78
0.0001 25.0 1700 1.9628 0.78
0.0001 26.0 1768 1.9681 0.78
0.0001 27.0 1836 1.9730 0.78
0.0001 28.0 1904 1.9761 0.78
0.0001 29.0 1972 1.9779 0.78
0.0 30.0 2040 1.9785 0.78

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0