metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: finetuned_bert_sentiment_classification
results: []
finetuned_bert_sentiment_classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9785
- Accuracy: 0.78
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 68 | 0.6297 | 0.73 |
No log | 2.0 | 136 | 0.9044 | 0.73 |
No log | 3.0 | 204 | 1.2008 | 0.78 |
No log | 4.0 | 272 | 1.4143 | 0.75 |
No log | 5.0 | 340 | 1.4934 | 0.76 |
No log | 6.0 | 408 | 1.5581 | 0.765 |
No log | 7.0 | 476 | 1.6158 | 0.78 |
0.1371 | 8.0 | 544 | 1.6786 | 0.785 |
0.1371 | 9.0 | 612 | 1.7112 | 0.78 |
0.1371 | 10.0 | 680 | 1.7416 | 0.78 |
0.1371 | 11.0 | 748 | 1.7667 | 0.78 |
0.1371 | 12.0 | 816 | 1.7937 | 0.78 |
0.1371 | 13.0 | 884 | 1.8139 | 0.78 |
0.1371 | 14.0 | 952 | 1.8347 | 0.78 |
0.0002 | 15.0 | 1020 | 1.8531 | 0.785 |
0.0002 | 16.0 | 1088 | 1.8645 | 0.78 |
0.0002 | 17.0 | 1156 | 1.8798 | 0.78 |
0.0002 | 18.0 | 1224 | 1.8964 | 0.78 |
0.0002 | 19.0 | 1292 | 1.9097 | 0.78 |
0.0002 | 20.0 | 1360 | 1.9206 | 0.78 |
0.0002 | 21.0 | 1428 | 1.9310 | 0.78 |
0.0002 | 22.0 | 1496 | 1.9410 | 0.78 |
0.0001 | 23.0 | 1564 | 1.9494 | 0.78 |
0.0001 | 24.0 | 1632 | 1.9566 | 0.78 |
0.0001 | 25.0 | 1700 | 1.9628 | 0.78 |
0.0001 | 26.0 | 1768 | 1.9681 | 0.78 |
0.0001 | 27.0 | 1836 | 1.9730 | 0.78 |
0.0001 | 28.0 | 1904 | 1.9761 | 0.78 |
0.0001 | 29.0 | 1972 | 1.9779 | 0.78 |
0.0 | 30.0 | 2040 | 1.9785 | 0.78 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0