muhtasham's picture
update model card README.md
419960e
|
raw
history blame
2 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: olm-bert-tiny-december-2022-target-glue-qnli
    results: []

olm-bert-tiny-december-2022-target-glue-qnli

This model is a fine-tuned version of muhtasham/olm-bert-tiny-december-2022 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6358
  • Accuracy: 0.6306

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.692 0.15 500 0.6882 0.5574
0.6777 0.31 1000 0.6637 0.6059
0.667 0.46 1500 0.6568 0.6064
0.6609 0.61 2000 0.6517 0.6193
0.6596 0.76 2500 0.6514 0.6127
0.6584 0.92 3000 0.6496 0.6202
0.6514 1.07 3500 0.6487 0.6191
0.652 1.22 4000 0.6420 0.6253
0.6449 1.37 4500 0.6415 0.6268
0.6477 1.53 5000 0.6358 0.6306

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.1.dev0
  • Tokenizers 0.13.2