finetuned-base_mini / README.md
muhtasham's picture
Librarian Bot: Add base_model information to model (#1)
5eb49a4
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imdb
metrics:
  - accuracy
  - f1
base_model: google/bert_uncased_L-4_H-256_A-4
model-index:
  - name: finetuned-base_mini
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: imdb
          type: imdb
          config: plain_text
          split: train
          args: plain_text
        metrics:
          - type: accuracy
            value: 0.9076
            name: Accuracy
          - type: f1
            value: 0.9515621723631789
            name: F1

finetuned-base_mini

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the imdb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3938
  • Accuracy: 0.9076
  • F1: 0.9516

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.354 2.55 500 0.2300 0.9116 0.9538
0.2086 5.1 1000 0.3182 0.8815 0.9370
0.1401 7.65 1500 0.2160 0.9241 0.9605
0.0902 10.2 2000 0.4684 0.8722 0.9317
0.0654 12.76 2500 0.4885 0.8747 0.9332
0.043 15.31 3000 0.3938 0.9076 0.9516

Framework versions

  • Transformers 4.25.0
  • Pytorch 1.12.1+cu113
  • Datasets 2.7.1
  • Tokenizers 0.13.2