|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imdb |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: imdb |
|
type: imdb |
|
config: plain_text |
|
split: train |
|
args: plain_text |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87168 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8716747437975058 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_uncased_L-2_H-128_A-2-finetuned-emotion-finetuned-tweet |
|
|
|
This model is a fine-tuned version of [muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion](https://huggingface.co/muhtasham/bert_uncased_L-2_H-128_A-2-finetuned-emotion) on the imdb dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4004 |
|
- Accuracy: 0.8717 |
|
- F1: 0.8717 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.4751 | 1.28 | 500 | 0.3880 | 0.828 | 0.8277 | |
|
| 0.3453 | 2.56 | 1000 | 0.3282 | 0.8608 | 0.8607 | |
|
| 0.2973 | 3.84 | 1500 | 0.3140 | 0.8695 | 0.8695 | |
|
| 0.26 | 5.12 | 2000 | 0.3154 | 0.8736 | 0.8735 | |
|
| 0.2218 | 6.39 | 2500 | 0.3144 | 0.8756 | 0.8756 | |
|
| 0.1977 | 7.67 | 3000 | 0.3197 | 0.876 | 0.8760 | |
|
| 0.1656 | 8.95 | 3500 | 0.3526 | 0.8737 | 0.8735 | |
|
| 0.1404 | 10.23 | 4000 | 0.3865 | 0.8691 | 0.8689 | |
|
| 0.121 | 11.51 | 4500 | 0.4004 | 0.8717 | 0.8717 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.0 |
|
- Tokenizers 0.13.2 |
|
|