|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-tiny-finetuned-wnut17-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: train |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.0 |
|
- name: Recall |
|
type: recall |
|
value: 0.0 |
|
- name: F1 |
|
type: f1 |
|
value: 0.0 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8960890010322284 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-tiny-finetuned-wnut17-ner |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6054 |
|
- Precision: 0.0 |
|
- Recall: 0.0 |
|
- F1: 0.0 |
|
- Accuracy: 0.8961 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| |
|
| No log | 1.0 | 27 | 1.1060 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 2.0 | 54 | 0.9075 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 3.0 | 81 | 0.7978 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 4.0 | 108 | 0.7333 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 5.0 | 135 | 0.6929 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 6.0 | 162 | 0.6661 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 7.0 | 189 | 0.6477 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 8.0 | 216 | 0.6346 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 9.0 | 243 | 0.6251 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 10.0 | 270 | 0.6182 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 11.0 | 297 | 0.6132 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 12.0 | 324 | 0.6097 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 13.0 | 351 | 0.6073 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 14.0 | 378 | 0.6059 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
| No log | 15.0 | 405 | 0.6054 | 0.0 | 0.0 | 0.0 | 0.8961 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.0 |
|
- Pytorch 1.12.0+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|