stabilityai-stablelm-2-1_6b-xsum-with-explanation-local-save-test_merged
/
configuration_stablelm_epoch.py
# Copyright 2023 Stability and The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" StableLM Epoch model configuration""" | |
from transformers import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
class StableLMEpochConfig(PretrainedConfig): | |
r""" | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 50_304): | |
Vocabulary size of the StableLM model. Defines the number of different tokens that | |
can be represented by the `inputs_ids` passed when calling [`StableLMEpochModel`]. | |
intermediate_size (`int`, *optional*, defaults to 6912): | |
Dimension of the MLP representations. | |
hidden_size (`int`, *optional*, defaults to 2560): | |
Dimension of the decoder layers and the pooler layer. | |
num_hidden_layers (`int`, *optional*, defaults to 32): | |
Number of hidden layers in the Transformer decoder. | |
num_attention_heads (`int`, *optional*, defaults to 32): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_key_value_heads (`int`, *optional*): | |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | |
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | |
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | |
by meanpooling all the original heads within that group. For more details checkout [this | |
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | |
`num_attention_heads`. | |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | |
The non-linear activation function (function or string). | |
rope_pct (`float`, *optional*, defaults to 1.0): | |
Percentage of hidden dimensions to allocate to rotary embeddings. | |
rope_theta (`float`, *optional*, defaults to 10000.0): | |
The base period of the RoPE embeddings. | |
max_position_embeddings (`int`, *optional*, defaults to 2048): | |
The maximum sequence length that this model might ever be used with. | |
Typically set this to something large just in case (e.g., 512 or 1024 or 2048). | |
initializer_range (`float`, *optional*, defaults to 1e-5): | |
The standard deviation of the truncated_normal_initializer for initializing | |
all weight matrices. | |
norm_eps (`float`, *optional*, defaults to 1e-8): | |
The epsilon used by the normalization layers. | |
use_cache (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should return the last key/values attentions | |
(not used by all models). Only relevant if `config.is_decoder=True`. | |
use_qkv_bias (`bool`, *optional*, defaults to `True`): | |
Whether or not the model should use bias for qkv layers. | |
tie_word_embeddings(`bool`, *optional*, defaults to `False`): | |
Whether to tie weight embeddings | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
""" | |
model_type = "stablelm_epoch" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
def __init__( | |
self, | |
vocab_size=50_304, | |
intermediate_size=6912, | |
hidden_size=2560, | |
num_hidden_layers=32, | |
num_attention_heads=32, | |
num_key_value_heads=32, | |
hidden_act="silu", | |
rope_pct=0.25, | |
rope_theta=10_000, | |
max_position_embeddings=4096, | |
initializer_range=0.02, | |
norm_eps=1.0e-5, | |
use_cache=True, | |
use_qkv_bias=True, | |
bos_token_id=0, | |
eos_token_id=2, | |
tie_word_embeddings=False, | |
attention_dropout: float = 0.0, | |
**kwargs, | |
): | |
self.vocab_size = vocab_size | |
self.max_position_embeddings = max_position_embeddings | |
self.intermediate_size = intermediate_size | |
self.hidden_size = hidden_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_key_value_heads = num_key_value_heads | |
self.hidden_act = hidden_act | |
self.rope_pct = rope_pct | |
self.rope_theta = rope_theta | |
self.initializer_range = initializer_range | |
self.norm_eps = norm_eps | |
self.use_cache = use_cache | |
self.use_qkv_bias = use_qkv_bias | |
self.tie_word_embeddings = tie_word_embeddings | |
self.attention_dropout = attention_dropout | |
super().__init__( | |
bos_token_id=bos_token_id, | |
eos_token_id=eos_token_id, | |
tie_word_embeddings=tie_word_embeddings, | |
**kwargs, | |
) | |