update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: gpt2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: codeparrot-ds
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# codeparrot-ds
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 1.0590
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 0.0005
|
38 |
+
- train_batch_size: 32
|
39 |
+
- eval_batch_size: 32
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 8
|
42 |
+
- total_train_batch_size: 256
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- lr_scheduler_warmup_steps: 1000
|
46 |
+
- num_epochs: 1
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
51 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
52 |
+
| 2.569 | 0.08 | 5000 | 1.7450 |
|
53 |
+
| 1.6804 | 0.15 | 10000 | 1.5230 |
|
54 |
+
| 1.5318 | 0.23 | 15000 | 1.4228 |
|
55 |
+
| 1.4512 | 0.31 | 20000 | 1.3543 |
|
56 |
+
| 1.3933 | 0.38 | 25000 | 1.3017 |
|
57 |
+
| 1.341 | 0.46 | 30000 | 1.2547 |
|
58 |
+
| 1.2962 | 0.54 | 35000 | 1.2101 |
|
59 |
+
| 1.2501 | 0.61 | 40000 | 1.1704 |
|
60 |
+
| 1.2074 | 0.69 | 45000 | 1.1307 |
|
61 |
+
| 1.1722 | 0.77 | 50000 | 1.0972 |
|
62 |
+
| 1.141 | 0.84 | 55000 | 1.0740 |
|
63 |
+
| 1.1228 | 0.92 | 60000 | 1.0618 |
|
64 |
+
| 1.1126 | 1.0 | 65000 | 1.0590 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.31.0
|
70 |
+
- Pytorch 2.0.1+cu118
|
71 |
+
- Datasets 2.13.1
|
72 |
+
- Tokenizers 0.13.3
|