metadata
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: FNST_trad_j
results: []
FNST_trad_j
This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.6540
- Accuracy: 0.6525
- F1: 0.6178
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 32
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.1058 | 1.0 | 1500 | 1.0564 | 0.5442 | 0.3843 |
0.9559 | 2.0 | 3000 | 0.9522 | 0.585 | 0.5503 |
0.8789 | 3.0 | 4500 | 0.8843 | 0.61 | 0.5733 |
0.8292 | 4.0 | 6000 | 0.8614 | 0.6167 | 0.5734 |
0.7807 | 5.0 | 7500 | 0.8519 | 0.62 | 0.5896 |
0.7559 | 6.0 | 9000 | 0.8648 | 0.6283 | 0.5965 |
0.7098 | 7.0 | 10500 | 0.8579 | 0.63 | 0.5961 |
0.6703 | 8.0 | 12000 | 0.8536 | 0.6417 | 0.6029 |
0.6114 | 9.0 | 13500 | 0.8686 | 0.6358 | 0.5997 |
0.611 | 10.0 | 15000 | 0.8948 | 0.6342 | 0.6045 |
0.5614 | 11.0 | 16500 | 0.9173 | 0.6342 | 0.6046 |
0.515 | 12.0 | 18000 | 0.9289 | 0.6425 | 0.6089 |
0.5107 | 13.0 | 19500 | 0.9581 | 0.64 | 0.6052 |
0.4691 | 14.0 | 21000 | 1.0099 | 0.6433 | 0.6091 |
0.4476 | 15.0 | 22500 | 1.0543 | 0.6458 | 0.6108 |
0.398 | 16.0 | 24000 | 1.1170 | 0.6425 | 0.6051 |
0.3828 | 17.0 | 25500 | 1.1585 | 0.6517 | 0.6102 |
0.3567 | 18.0 | 27000 | 1.2252 | 0.6475 | 0.6114 |
0.3334 | 19.0 | 28500 | 1.2827 | 0.6675 | 0.6317 |
0.2982 | 20.0 | 30000 | 1.4256 | 0.6517 | 0.6257 |
0.2734 | 21.0 | 31500 | 1.4591 | 0.6583 | 0.6305 |
0.2556 | 22.0 | 33000 | 1.5516 | 0.66 | 0.6263 |
0.2409 | 23.0 | 34500 | 1.6793 | 0.6592 | 0.6219 |
0.2226 | 24.0 | 36000 | 1.8157 | 0.66 | 0.6218 |
0.1971 | 25.0 | 37500 | 1.9089 | 0.6575 | 0.6241 |
0.1832 | 26.0 | 39000 | 2.0406 | 0.6558 | 0.6300 |
0.1921 | 27.0 | 40500 | 2.1448 | 0.6583 | 0.6254 |
0.1496 | 28.0 | 42000 | 2.2888 | 0.6458 | 0.6136 |
0.1538 | 29.0 | 43500 | 2.3520 | 0.66 | 0.6241 |
0.1558 | 30.0 | 45000 | 2.4748 | 0.6492 | 0.6207 |
0.1409 | 31.0 | 46500 | 2.5126 | 0.6542 | 0.6175 |
0.119 | 32.0 | 48000 | 2.6540 | 0.6525 | 0.6178 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1