|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wl |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-clinical-wl-es-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wl |
|
type: wl |
|
config: WL |
|
split: train |
|
args: WL |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6865079365079365 |
|
- name: Recall |
|
type: recall |
|
value: 0.7355442176870748 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7101806239737274 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8267950260730044 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-clinical-wl-es-finetuned-ner |
|
|
|
This model is a fine-tuned version of [plncmm/roberta-clinical-wl-es](https://huggingface.co/plncmm/roberta-clinical-wl-es) on the wl dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6227 |
|
- Precision: 0.6865 |
|
- Recall: 0.7355 |
|
- F1: 0.7102 |
|
- Accuracy: 0.8268 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 1.028 | 1.0 | 500 | 0.6870 | 0.6558 | 0.6855 | 0.6703 | 0.8035 | |
|
| 0.5923 | 2.0 | 1000 | 0.6248 | 0.6851 | 0.7235 | 0.7038 | 0.8244 | |
|
| 0.4928 | 3.0 | 1500 | 0.6227 | 0.6865 | 0.7355 | 0.7102 | 0.8268 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.2 |
|
|