mrmrob003 commited on
Commit
1edf252
·
1 Parent(s): 0ec2039

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 752.71 +/- 94.65
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1018.93 +/- 105.26
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32dafa910f7c9da6710ba74b226dbd4c5e7001cb11b7c61bb54bed06b49ea31a
3
- size 128400
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8188f6efcf597c56d2a83184bcaac35cb1853df3e318f60c1438b36a92081f68
3
+ size 129245
a2c-AntBulletEnv-v0/data CHANGED
@@ -32,27 +32,30 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "num_timesteps": 2000000,
36
- "_total_timesteps": 2000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
- "start_time": 1690815827723608601,
41
- "learning_rate": 0.001,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABcuS76A47U9Bv1+P+b8az0dgTK9x0YZPan8Fb40pf+9/1AavwtALL65bDO8uKNJvGcnBz8AB2i+tSF6PwB0r714XV4/y7k9vqE+X76CtMO8Gi+APxDRl7uOXIm/DuqMvwAAgD8AAIA/AACAPwAAAABOaAe+ury1PoFUbz+GoYU99b22Pb8ryztZJyM9b6x5vbcFgL8nN1E6L69Nv7VEqr2i2kI9tOY/PqNYzr1UGKq7dntMP87xGj1uPxQ+sKKIPYkBlD4OQDy9JWPJPjOXZzgAAAAAAACAPwAAgD8AAIA/XvJvvlT/gb3Xe38/t8UKPrNC3z12HKI8EJmcvSITpTtsLYA/rE+vu12GNb9YW+E9MnB8PpgxAT5HaRc/4YxvvJN2CD9YvDy+hpvvPR3z3T2lGAk/pMxlPvREeb9Uov49AACAPwAAgD8AAIA/AAAAALMfCL5/pNa8gOl/P0tWEz4SrB6+gtQvvQrAxj2EfNu9OJiHv8g/2ziBmRY/+mYbv//vPD4ZK+Q+Y7zrvR1joj1Zchk+xO5zPqijgT9LZGI+HcYaP5tIEr/hqX4/Na3iPQAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
53
  ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
  },
55
- "_last_original_obs": null,
 
 
 
56
  "_episode_num": 0,
57
  "use_sde": true,
58
  "sde_sample_freq": -1,
@@ -60,13 +63,13 @@
60
  "_stats_window_size": 100,
61
  "ep_info_buffer": {
62
  ":type:": "<class 'collections.deque'>",
63
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa5Li2lVLmMAWyUTegDjAF0lEdAqrGt12aDw3V9lChoBkdAh95zF2mpEWgHTegDaAhHQKq00+t8uz11fZQoaAZHQIVRqrzXjENoB03oA2gIR0Cqt/fOMVDbdX2UKGgGR0CGVVQemvW6aAdN6ANoCEdAqrlgInjQzHV9lChoBkdAhQT3/HYHxGgHTegDaAhHQKq948mrsB11fZQoaAZHQG4scGcFyJdoB028AWgIR0CqvstzKcNIdX2UKGgGR0CGOB7dBSk1aAdN6ANoCEdAqsG87QswtnV9lChoBkdAhHDXo9s7+2gHTegDaAhHQKrGQcriEQJ1fZQoaAZHQG7vf5DZ13doB026AWgIR0Cqy4Ftj0+UdX2UKGgGR0CE2WDaGpMpaAdN6ANoCEdAqswHNzKcNHV9lChoBkdAhZUCudPLxWgHTegDaAhHQKrM6mx+rlx1fZQoaAZHQIU77ZL7GedoB03oA2gIR0CqzwYf4h2XdX2UKGgGR0CCmJmL9/BnaAdN6ANoCEdAqtd0Oy3TeHV9lChoBkdAgy8Lnkkrw2gHTegDaAhHQKrYAzdDYyx1fZQoaAZHQIIYN7SiM5xoB03oA2gIR0Cq2O1jy4FzdX2UKGgGR0CEqisAeaKDaAdN6ANoCEdAqtuRvDP4VXV9lChoBkdAhQVh8pkPMGgHTegDaAhHQKrl5NL127p1fZQoaAZHQISx/uJDVpdoB03oA2gIR0Cq5m4Ny5qedX2UKGgGR0CE1MhcJMQFaAdN6ANoCEdAqudSUmlZYHV9lChoBkdAhZHCnxaxHGgHTegDaAhHQKrpcVRDTjN1fZQoaAZHQIazmzposZpoB03oA2gIR0Cq8frWRRuTdX2UKGgGR0CHikd/axoqaAdN6ANoCEdAqvKECo0hvHV9lChoBkdAhYAT3RG+bmgHTegDaAhHQKrzay5Zr591fZQoaAZHQIY5amXPZ7JoB03oA2gIR0Cq9coCEHt4dX2UKGgGR0B5fDcrRSgoaAdN6ANoCEdAqwB72tdRi3V9lChoBkdAhqeDLKV6eGgHTegDaAhHQKsBCumrKeV1fZQoaAZHQIlcsju8brFoB03oA2gIR0CrAfDkU9IPdX2UKGgGR0CGZvVDKHO9aAdN6ANoCEdAqwQYo/iYLXV9lChoBkdAhj17wz+FUWgHTegDaAhHQKsMopEx7At1fZQoaAZHQIR49mJ3xF1oB03oA2gIR0CrDTJlJ6IFdX2UKGgGR0CGqTwvxpcpaAdN6ANoCEdAqw4eQ4jrzHV9lChoBkdAhWWrPUrkKmgHTegDaAhHQKsQVPmgam51fZQoaAZHQIeMZ6OYIB1oB03oA2gIR0CrGxSauwHJdX2UKGgGR0CIcZtFa0QcaAdN6ANoCEdAqxueZiNKiHV9lChoBkdAhnyYISlFdGgHTegDaAhHQKscka8YhuB1fZQoaAZHQIYW82NvOyFoB03oA2gIR0CrHsqPfbbldX2UKGgGR0CD2I6VdHDraAdN6ANoCEdAqydMdgfEGnV9lChoBkdAhM3ZfUnXumgHTegDaAhHQKsn1hZQpF11fZQoaAZHQIQ7Md1dPcloB03oA2gIR0CrKL0KRdQgdX2UKGgGR0CExMx/NJOGaAdN6ANoCEdAqyrl+Vkc0nV9lChoBkdAhXfe+/QBxWgHTegDaAhHQKs1unx8UmF1fZQoaAZHQIXbJeJHiFVoB03oA2gIR0CrNk1e0G/vdX2UKGgGR0CGg78jzI3jaAdN6ANoCEdAqzc15fMOgHV9lChoBkdAhUxiCz1K5GgHTegDaAhHQKs5WT6i0v51fZQoaAZHQIBzWKqGUOdoB03oA2gIR0CrQeO7HyVfdX2UKGgGR0CCQRNBWxQjaAdN6ANoCEdAq0JucjJMg3V9lChoBkdAgosVGCqZMWgHTegDaAhHQKtDWX/o7mx1fZQoaAZHQIeANH2AXl9oB03oA2gIR0CrRYJ3xFy8dX2UKGgGR0CEUFOclPadaAdN6ANoCEdAq1Bu8dxQznV9lChoBkdAhdjFjd56dGgHTegDaAhHQKtQ/aoMrmR1fZQoaAZHQITkYFJQLuxoB03oA2gIR0CrUehMajvedX2UKGgGR0CEm8EkjX4CaAdN6ANoCEdAq1QEcENe+nV9lChoBkdAhiZDQiRnvmgHTegDaAhHQKtchrFfiP11fZQoaAZHQIXHjgKnei1oB03oA2gIR0CrXRBCdBjXdX2UKGgGR0CKKhOpKjBVaAdN6ANoCEdAq13803wTd3V9lChoBkdAg31pWNm16WgHTegDaAhHQKtgDezlcQl1fZQoaAZHQIzkgBgeA/doB03oA2gIR0CrasDTBqKxdX2UKGgGR0CO28SV4X41aAdN6ANoCEdAq2tOvbGm13V9lChoBkdAi76vtMPBi2gHTegDaAhHQKtsQETQE6l1fZQoaAZHQIubkgGKQ7toB03oA2gIR0CrbmvECNjtdX2UKGgGR0CFD3Ba9sabaAdN6ANoCEdAq3b6pLmITHV9lChoBkdAgEbw/X5FgGgHTegDaAhHQKt3hNfPX051fZQoaAZHQIr27HsC1Z1oB03oA2gIR0CreGkUKzAvdX2UKGgGR0CKuK++ueSTaAdN6ANoCEdAq3qPhZQpF3V9lChoBkdAjf5E25xzaWgHTegDaAhHQKuFStJ4B3l1fZQoaAZHQIw+9mnO0LNoB03oA2gIR0Crhc3vhIe6dX2UKGgGR0CLkO2BreqJaAdN6ANoCEdAq4a4iJO32HV9lChoBkdAkAFYAS39aWgHTegDaAhHQKuIzYZl4C91fZQoaAZHQI48xzPrv9doB03oA2gIR0CrkTl3hXKbdX2UKGgGR0CLryc1fmcOaAdN6ANoCEdAq5G+qioKlnV9lChoBkdAhvrTUy57PmgHTegDaAhHQKuSph/Aj6h1fZQoaAZHQIMbIgDA8CBoB03oA2gIR0CrlMrt/nW8dX2UKGgGR0CJ2bIqbz9TaAdN6ANoCEdAq59mK8+Ro3V9lChoBkdAimJAIY3vQWgHTegDaAhHQKuf7FjNILB1fZQoaAZHQI9MNR1oxpNoB03oA2gIR0CroNDvd/KAdX2UKGgGR0CLg4cHWz4UaAdN6ANoCEdAq6Lni97F9HV9lChoBkdAilcC79Q40mgHTegDaAhHQKurQYE4ecR1fZQoaAZHQIvc8BhhH9ZoB03oA2gIR0Crq80WdmQKdX2UKGgGR0CH2DqASWZ7aAdN6ANoCEdAq6yxN9H+ZXV9lChoBkdAiqy5OafBe2gHTegDaAhHQKuu24iosI51fZQoaAZHQIskGEqUeMhoB03oA2gIR0CruXY0l7dBdX2UKGgGR0CNk7EtNBWxaAdN6ANoCEdAq7n56rvLHXV9lChoBkdAi614BV+7UWgHTegDaAhHQKu62r1/UfB1fZQoaAZHQIkpPFPznRtoB03oA2gIR0CrvPt7BwdbdX2UKGgGR0CFBAur6tT2aAdN6ANoCEdAq8VLVBlcyHV9lChoBkdAgxOfHHWBjGgHTegDaAhHQKvF1Q0oBq91fZQoaAZHQIXc0CYCyQhoB03oA2gIR0Crxre4smOVdX2UKGgGR0CLDB+T/yXlaAdN6ANoCEdAq8jjvPTodXV9lChoBkdAjVwVJlJ6IGgHTegDaAhHQKvTkH0K7Zp1fZQoaAZHQIkSHDpC8e1oB03oA2gIR0Cr1CAU1yeadX2UKGgGR0CJYPPNVzZIaAdN6ANoCEdAq9UAPEsJ6nV9lChoBkdAjKE+lj3Eh2gHTegDaAhHQKvXGTh5xBF1fZQoaAZHQI1Gq/yoXKtoB03oA2gIR0Cr34knTiKjdX2UKGgGR0COSCj5bhWHaAdN6ANoCEdAq+AUdJaq0nV9lChoBkdAi48Qg9vCM2gHTegDaAhHQKvg/vMr3Cd1fZQoaAZHQJAlVacI7eVoB03oA2gIR0Cr4xp4bCJodX2UKGgGR0CKa3xn3+MqaAdN6ANoCEdAq+3RQWN3n3V9lChoBkdAiX+gf+0gKWgHTegDaAhHQKvuWXUpd8l1fZQoaAZHQIll3+GXXy1oB03oA2gIR0Cr70alDWsjdX2UKGgGR0CLV4WhysCDaAdN6ANoCEdAq/FtBt1p03VlLg=="
64
  },
65
  "ep_success_buffer": {
66
  ":type:": "<class 'collections.deque'>",
67
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
68
  },
69
- "_n_updates": 62500,
70
  "n_steps": 8,
71
  "gamma": 0.99,
72
  "gae_lambda": 0.9,
 
32
  "weight_decay": 0
33
  }
34
  },
35
+ "num_timesteps": 3000000,
36
+ "_total_timesteps": 3000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1690822564105464174,
41
+ "learning_rate": 0.00095,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAHNIrx0w7w/ACTOvwHrHz+F+b0/UyqiPxDCoT9mHMc9S4Vgvs4uET8/1ME/rzq2vBMK/74bdFFAz7bvvxlicj2pdSi/VNFIP2s0AT/3/eO90qyvPxobXD1zF9o94mSePjh1gz9eCvM+ziTGPpYJFT831l0/hE+0P1qArr/tuVY+jhxSv+U3qD8D38A/vUpBvw1uf7+jrJg8knnLPdOAb8BN8ZU/2ViEvdaI1L+ww+M+9abRvzgaq78dOxg+DE81wHlSZD+OmnO/ZcaZP/6Cnj4iRHm/XgrzPvZfJcCWCRU/wy7jPqYP/z5hfCg+8SSWPviK3z+8ShE/6/9mPwPrdT1JRDO/QeIJwA/jzj/kZCS/wuRaPzdD5D7Gqzm/EgWNPlf37T5sU92+LyL9Pp7PJD0wrP29895Iv4LZyr65h2O+OHWDP14K8z7OJMY+lgkVP0Gpsj+t4Hw+GT26PoO6Iz87uKw9M+5av7pDlT8V99O/VGp/vz3Bm7rocIm/FjF6PuQYlT9oCjO83TgCPwc+KEA4vtK/qwzwvO5A/D4V9IU8zNEivzyZV74toqk/f9UOPyJEeb9E0wbAziTGPpYJFT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
53
  ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
  },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXEXO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuGciPQAAAABIDOq/AAAAAAkvXb0AAAAAK5fzPwAAAAChdnE9AAAAAEWM+j8AAAAAG3fsPQAAAACigOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEeICNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL2SLr0AAAAAiTT/vwAAAABD2fU6AAAAAB5W+T8AAAAAsT2KPQAAAADZWQBAAAAAAK2J1jwAAAAAoLj8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALHL3zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOmA2+AAAAAH6h378AAAAAWYMKPgAAAAAVq+8/AAAAALwlEj0AAAAAUWLZPwAAAAAO0QM9AAAAAD7j3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FW02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh6ULPQAAAACdAOO/AAAAAJDEvj0AAAAA1yb7PwAAAACZo6c9AAAAAOgU3z8AAAAATAM7vAAAAAC7fdq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
  "_episode_num": 0,
60
  "use_sde": true,
61
  "sde_sample_freq": -1,
 
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8WhbB42TCMAWyUTegDjAF0lEdAtCrau/1xsHV9lChoBkdAjjF5y2hIv2gHTegDaAhHQLQrybM5fdB1fZQoaAZHQIpr76UJOWVoB03oA2gIR0C0LgYczZYgdX2UKGgGR0CPcpxXGOuJaAdN6ANoCEdAtC80bbUPQXV9lChoBkdAjAxuh0yP/GgHTegDaAhHQLQyUQBxPwd1fZQoaAZHQI6G4mVqveRoB03oA2gIR0C0M4BrSE13dX2UKGgGR0CIeLWmxdIHaAdN6ANoCEdAtDWyeg+Ql3V9lChoBkdAiwQ5n+Q2dmgHTegDaAhHQLQ22zvZyuJ1fZQoaAZHQI5bLzbvgFZoB03oA2gIR0C0OPu1KGtZdX2UKGgGR0CJ7t2ovSMMaAdN6ANoCEdAtDnn9m6GxnV9lChoBkdAjkKFbu+h5GgHTegDaAhHQLQ8JFbmlqJ1fZQoaAZHQIt+7iGWUr1oB03oA2gIR0C0PXOXZ5AydX2UKGgGR0CQJxFSbYseaAdN6ANoCEdAtECbuJDVpnV9lChoBkdAkBqMmOU+tGgHTegDaAhHQLRBjIClrM11fZQoaAZHQJFOs176YVtoB03oA2gIR0C0Q8vcWTHKdX2UKGgGR0CQ2thbnoxIaAdN6ANoCEdAtET/FdcB2nV9lChoBkdAkIGhdUsFuGgHTegDaAhHQLRHHzijtXx1fZQoaAZHQI8w730wrUdoB03oA2gIR0C0SBCcXm/4dX2UKGgGR0CMWfFrEcbSaAdN6ANoCEdAtEsWQCCBgHV9lChoBkdAj3DSdOIqLGgHTegDaAhHQLRNdtjkMkR1fZQoaAZHQJEKq5NGmUJoB03oA2gIR0C0UI+z2OABdX2UKGgGR0CKTCX0oSctaAdN6ANoCEdAtFF9j5Kvm3V9lChoBkdAkYmfZZjhDWgHTegDaAhHQLRTxXSBshx1fZQoaAZHQI6g3aURnOBoB03oA2gIR0C0VPj+NtIkdX2UKGgGR0CQis/lyR0VaAdN6ANoCEdAtFcmD/VAiXV9lChoBkdAkHsP/NqxkmgHTegDaAhHQLRYEradtl91fZQoaAZHQI6P8mv4dp9oB03oA2gIR0C0WqmNWEK3dX2UKGgGR0CQtwTmnwXqaAdN6ANoCEdAtFxzvoePrHV9lChoBkdAj74UPYnOSmgHTegDaAhHQLRe3azu4PR1fZQoaAZHQJAqpdxAB1doB03oA2gIR0C0X8mOyVv/dX2UKGgGR0CFxJ4W1twaaAdN6ANoCEdAtGIBv/BFeHV9lChoBkdAjdYBi1Aqu2gHTegDaAhHQLRjNMW43FV1fZQoaAZHQJCfNiMHbAVoB03oA2gIR0C0ZWAWFev7dX2UKGgGR0CRYesDGLk0aAdN6ANoCEdAtGZTIbOu73V9lChoBkdAiKUBun/DL2gHTegDaAhHQLRpJlXzUZx1fZQoaAZHQJJSToUzsQdoB03oA2gIR0C0atiSmqHXdX2UKGgGR0CQnsAI6bONaAdN6ANoCEdAtGz/2alUInV9lChoBkdAkL/O4LCvYGgHTegDaAhHQLRt5ngpBop1fZQoaAZHQJD+llg+hXdoB03oA2gIR0C0cBP+wTufdX2UKGgGR0CRq9vOyE+QaAdN6ANoCEdAtHE6tQsPKHV9lChoBkdAjfujL0SRKmgHTegDaAhHQLRzWnuiN851fZQoaAZHQJIh/VtoBaNoB03oA2gIR0C0dEHKSxJNdX2UKGgGR0CSkPrqdH2AaAdN6ANoCEdAtHdGmQ8wH3V9lChoBkdAkdTWjwhGIGgHTegDaAhHQLR4yTrmhdt1fZQoaAZHQJGC97WuoxZoB03oA2gIR0C0euwGSpzcdX2UKGgGR0CQyPWUbDMvaAdN6ANoCEdAtHvYyRB/qnV9lChoBkdAkFxX49HMEGgHTegDaAhHQLR+B9FnZkF1fZQoaAZHQJFRCW6bvw5oB03oA2gIR0C0fy31SOzZdX2UKGgGR0CQoZl3yI56aAdN6ANoCEdAtIFJ0+1SfnV9lChoBkdAkY0NwaR6nmgHTegDaAhHQLSCNpQUHpt1fZQoaAZHQJDKY7HQyARoB03oA2gIR0C0hZ73XZoPdX2UKGgGR0CRAYqZc9nsaAdN6ANoCEdAtIblgssg+3V9lChoBkdAjvJ28AaNuWgHTegDaAhHQLSJAK5TZQJ1fZQoaAZHQJBR5uYQarFoB03oA2gIR0C0iemiYb84dX2UKGgGR0CM2Rj6vaDgaAdN6ANoCEdAtIwiyzHCGnV9lChoBkdAj4ywMpgCwWgHTegDaAhHQLSNSd5Y5kt1fZQoaAZHQJAQc7fYSQJoB03oA2gIR0C0j2XmvGIbdX2UKGgGR0CQIE8qnWJ8aAdN6ANoCEdAtJCPmLcbi3V9lChoBkdAkKDnU+cH4WgHTegDaAhHQLSTpVf/m1Z1fZQoaAZHQI47hvP1L8JoB03oA2gIR0C0lOjoIOYqdX2UKGgGR0CQl+okiUxEaAdN6ANoCEdAtJdCEmICVHV9lChoBkdAkSqCPyTY/WgHTegDaAhHQLSYQDHfdh11fZQoaAZHQI5KagVXV9ZoB03oA2gIR0C0mplx0dR0dX2UKGgGR0CRGmw+dK/VaAdN6ANoCEdAtJvJjlPrOnV9lChoBkdAkGt6n752yWgHTegDaAhHQLSeTmseXAx1fZQoaAZHQJBJPicXm/5oB03oA2gIR0C0n7FV5rxidX2UKGgGR0CQWMQxN7BwaAdN6ANoCEdAtKJzj94u9XV9lChoBkdAkNjFq33HrGgHTegDaAhHQLSjqNL127p1fZQoaAZHQI6C7CHh0hhoB03oA2gIR0C0pdRhYvFndX2UKGgGR0CRgglV94NaaAdN6ANoCEdAtKbGB3A2ynV9lChoBkdAkRubJbMX8GgHTegDaAhHQLSpHQ40dil1fZQoaAZHQJDYKfWcz69oB03oA2gIR0C0qlf/echDdX2UKGgGR0CQwGgqEvkBaAdN6ANoCEdAtK1Qal1r7HV9lChoBkdAkUImFajesWgHTegDaAhHQLSutpJwsGx1fZQoaAZHQJCW+9RJmNBoB03oA2gIR0C0sRHZkCmudX2UKGgGR0CRDZq4H5aeaAdN6ANoCEdAtLJbPcBU73V9lChoBkdAkGzWT1TR6WgHTegDaAhHQLS0tPAfuCx1fZQoaAZHQJBlVTMqz7doB03oA2gIR0C0tbFtsN2DdX2UKGgGR0CPpTp35eqraAdN6ANoCEdAtLgKKwY+CHV9lChoBkdAkQ3FjmSyMWgHTegDaAhHQLS5pHeaa1F1fZQoaAZHQJIr39If8uVoB03oA2gIR0C0vLgq7ROUdX2UKGgGR0CTBzJjUd7waAdN6ANoCEdAtL2zLMcIaHV9lChoBkdAkBHErTYukGgHTegDaAhHQLS/9TgEU0x1fZQoaAZHQJDWAZFXq7loB03oA2gIR0C0wSRTsIE9dX2UKGgGR0CQ2WbuMMqjaAdN6ANoCEdAtMNGkZaV2XV9lChoBkdAkG4gBxPweGgHTegDaAhHQLTELV9nbqR1fZQoaAZHQJIBMipvP1NoB03oA2gIR0C0xoYIrvsrdX2UKGgGR0CRSoReTmnwaAdN6ANoCEdAtMg/Jp35e3V9lChoBkdAj/Cln7Hhj2gHTegDaAhHQLTK3mHP/rB1fZQoaAZHQIxO9tdiUgVoB03oA2gIR0C0y8rmQr+YdX2UKGgGR0CQxXlHSWqtaAdN6ANoCEdAtM4HL4etCHV9lChoBkdAkABWNrCWNWgHTegDaAhHQLTPQjnFHax1fZQoaAZHQIz05OUMXrNoB03oA2gIR0C00Xl+Vkc0dX2UKGgGR0CP8NN/vv0AaAdN6ANoCEdAtNJsnv2GqXV9lChoBkdAkHltZq20A2gHTegDaAhHQLTVNX4j8k51fZQoaAZHQJCaGBd2PktoB03oA2gIR0C01wlk1/DtdX2UKGgGR0CQWWAGjbi7aAdN6ANoCEdAtNlB4D9wWHV9lChoBkdAkLrgQ6IWQGgHTegDaAhHQLTaNhjOLR91fZQoaAZHQJAImiZfD1poB03oA2gIR0C03IDVH4GmdX2UKGgGR0CNymuxrzoVaAdN6ANoCEdAtN3DMRpUP3VlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
  },
72
+ "_n_updates": 93750,
73
  "n_steps": 8,
74
  "gamma": 0.99,
75
  "gae_lambda": 0.9,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4d8f63a37313437d0819995c97eb7dc1529ba8540628f6281f07330a211f4496
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa59cb317986971e62e5f11f1de241e887a0164f1bca5a3187cc26176439c314
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f3ecb071cde1772f992780cac6e5102e9ddad72ea94ad96089915c213f9e5ade
3
  size 56894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b54d02fcb9dcc18a05d18016ed97989adba0efa909420cf1d9c07b2e69ffd6b
3
  size 56894
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc846f16b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc846f16b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc846f16c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc846f16cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fc846f16d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc846f16dd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc846f16e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc846f16ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc846f16f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc846f17010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc846f170a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc846f17130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690815827723608601, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABcuS76A47U9Bv1+P+b8az0dgTK9x0YZPan8Fb40pf+9/1AavwtALL65bDO8uKNJvGcnBz8AB2i+tSF6PwB0r714XV4/y7k9vqE+X76CtMO8Gi+APxDRl7uOXIm/DuqMvwAAgD8AAIA/AACAPwAAAABOaAe+ury1PoFUbz+GoYU99b22Pb8ryztZJyM9b6x5vbcFgL8nN1E6L69Nv7VEqr2i2kI9tOY/PqNYzr1UGKq7dntMP87xGj1uPxQ+sKKIPYkBlD4OQDy9JWPJPjOXZzgAAAAAAACAPwAAgD8AAIA/XvJvvlT/gb3Xe38/t8UKPrNC3z12HKI8EJmcvSITpTtsLYA/rE+vu12GNb9YW+E9MnB8PpgxAT5HaRc/4YxvvJN2CD9YvDy+hpvvPR3z3T2lGAk/pMxlPvREeb9Uov49AACAPwAAgD8AAIA/AAAAALMfCL5/pNa8gOl/P0tWEz4SrB6+gtQvvQrAxj2EfNu9OJiHv8g/2ziBmRY/+mYbv//vPD4ZK+Q+Y7zrvR1joj1Zchk+xO5zPqijgT9LZGI+HcYaP5tIEr/hqX4/Na3iPQAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa5Li2lVLmMAWyUTegDjAF0lEdAqrGt12aDw3V9lChoBkdAh95zF2mpEWgHTegDaAhHQKq00+t8uz11fZQoaAZHQIVRqrzXjENoB03oA2gIR0Cqt/fOMVDbdX2UKGgGR0CGVVQemvW6aAdN6ANoCEdAqrlgInjQzHV9lChoBkdAhQT3/HYHxGgHTegDaAhHQKq948mrsB11fZQoaAZHQG4scGcFyJdoB028AWgIR0CqvstzKcNIdX2UKGgGR0CGOB7dBSk1aAdN6ANoCEdAqsG87QswtnV9lChoBkdAhHDXo9s7+2gHTegDaAhHQKrGQcriEQJ1fZQoaAZHQG7vf5DZ13doB026AWgIR0Cqy4Ftj0+UdX2UKGgGR0CE2WDaGpMpaAdN6ANoCEdAqswHNzKcNHV9lChoBkdAhZUCudPLxWgHTegDaAhHQKrM6mx+rlx1fZQoaAZHQIU77ZL7GedoB03oA2gIR0CqzwYf4h2XdX2UKGgGR0CCmJmL9/BnaAdN6ANoCEdAqtd0Oy3TeHV9lChoBkdAgy8Lnkkrw2gHTegDaAhHQKrYAzdDYyx1fZQoaAZHQIIYN7SiM5xoB03oA2gIR0Cq2O1jy4FzdX2UKGgGR0CEqisAeaKDaAdN6ANoCEdAqtuRvDP4VXV9lChoBkdAhQVh8pkPMGgHTegDaAhHQKrl5NL127p1fZQoaAZHQISx/uJDVpdoB03oA2gIR0Cq5m4Ny5qedX2UKGgGR0CE1MhcJMQFaAdN6ANoCEdAqudSUmlZYHV9lChoBkdAhZHCnxaxHGgHTegDaAhHQKrpcVRDTjN1fZQoaAZHQIazmzposZpoB03oA2gIR0Cq8frWRRuTdX2UKGgGR0CHikd/axoqaAdN6ANoCEdAqvKECo0hvHV9lChoBkdAhYAT3RG+bmgHTegDaAhHQKrzay5Zr591fZQoaAZHQIY5amXPZ7JoB03oA2gIR0Cq9coCEHt4dX2UKGgGR0B5fDcrRSgoaAdN6ANoCEdAqwB72tdRi3V9lChoBkdAhqeDLKV6eGgHTegDaAhHQKsBCumrKeV1fZQoaAZHQIlcsju8brFoB03oA2gIR0CrAfDkU9IPdX2UKGgGR0CGZvVDKHO9aAdN6ANoCEdAqwQYo/iYLXV9lChoBkdAhj17wz+FUWgHTegDaAhHQKsMopEx7At1fZQoaAZHQIR49mJ3xF1oB03oA2gIR0CrDTJlJ6IFdX2UKGgGR0CGqTwvxpcpaAdN6ANoCEdAqw4eQ4jrzHV9lChoBkdAhWWrPUrkKmgHTegDaAhHQKsQVPmgam51fZQoaAZHQIeMZ6OYIB1oB03oA2gIR0CrGxSauwHJdX2UKGgGR0CIcZtFa0QcaAdN6ANoCEdAqxueZiNKiHV9lChoBkdAhnyYISlFdGgHTegDaAhHQKscka8YhuB1fZQoaAZHQIYW82NvOyFoB03oA2gIR0CrHsqPfbbldX2UKGgGR0CD2I6VdHDraAdN6ANoCEdAqydMdgfEGnV9lChoBkdAhM3ZfUnXumgHTegDaAhHQKsn1hZQpF11fZQoaAZHQIQ7Md1dPcloB03oA2gIR0CrKL0KRdQgdX2UKGgGR0CExMx/NJOGaAdN6ANoCEdAqyrl+Vkc0nV9lChoBkdAhXfe+/QBxWgHTegDaAhHQKs1unx8UmF1fZQoaAZHQIXbJeJHiFVoB03oA2gIR0CrNk1e0G/vdX2UKGgGR0CGg78jzI3jaAdN6ANoCEdAqzc15fMOgHV9lChoBkdAhUxiCz1K5GgHTegDaAhHQKs5WT6i0v51fZQoaAZHQIBzWKqGUOdoB03oA2gIR0CrQeO7HyVfdX2UKGgGR0CCQRNBWxQjaAdN6ANoCEdAq0JucjJMg3V9lChoBkdAgosVGCqZMWgHTegDaAhHQKtDWX/o7mx1fZQoaAZHQIeANH2AXl9oB03oA2gIR0CrRYJ3xFy8dX2UKGgGR0CEUFOclPadaAdN6ANoCEdAq1Bu8dxQznV9lChoBkdAhdjFjd56dGgHTegDaAhHQKtQ/aoMrmR1fZQoaAZHQITkYFJQLuxoB03oA2gIR0CrUehMajvedX2UKGgGR0CEm8EkjX4CaAdN6ANoCEdAq1QEcENe+nV9lChoBkdAhiZDQiRnvmgHTegDaAhHQKtchrFfiP11fZQoaAZHQIXHjgKnei1oB03oA2gIR0CrXRBCdBjXdX2UKGgGR0CKKhOpKjBVaAdN6ANoCEdAq13803wTd3V9lChoBkdAg31pWNm16WgHTegDaAhHQKtgDezlcQl1fZQoaAZHQIzkgBgeA/doB03oA2gIR0CrasDTBqKxdX2UKGgGR0CO28SV4X41aAdN6ANoCEdAq2tOvbGm13V9lChoBkdAi76vtMPBi2gHTegDaAhHQKtsQETQE6l1fZQoaAZHQIubkgGKQ7toB03oA2gIR0CrbmvECNjtdX2UKGgGR0CFD3Ba9sabaAdN6ANoCEdAq3b6pLmITHV9lChoBkdAgEbw/X5FgGgHTegDaAhHQKt3hNfPX051fZQoaAZHQIr27HsC1Z1oB03oA2gIR0CreGkUKzAvdX2UKGgGR0CKuK++ueSTaAdN6ANoCEdAq3qPhZQpF3V9lChoBkdAjf5E25xzaWgHTegDaAhHQKuFStJ4B3l1fZQoaAZHQIw+9mnO0LNoB03oA2gIR0Crhc3vhIe6dX2UKGgGR0CLkO2BreqJaAdN6ANoCEdAq4a4iJO32HV9lChoBkdAkAFYAS39aWgHTegDaAhHQKuIzYZl4C91fZQoaAZHQI48xzPrv9doB03oA2gIR0CrkTl3hXKbdX2UKGgGR0CLryc1fmcOaAdN6ANoCEdAq5G+qioKlnV9lChoBkdAhvrTUy57PmgHTegDaAhHQKuSph/Aj6h1fZQoaAZHQIMbIgDA8CBoB03oA2gIR0CrlMrt/nW8dX2UKGgGR0CJ2bIqbz9TaAdN6ANoCEdAq59mK8+Ro3V9lChoBkdAimJAIY3vQWgHTegDaAhHQKuf7FjNILB1fZQoaAZHQI9MNR1oxpNoB03oA2gIR0CroNDvd/KAdX2UKGgGR0CLg4cHWz4UaAdN6ANoCEdAq6Lni97F9HV9lChoBkdAilcC79Q40mgHTegDaAhHQKurQYE4ecR1fZQoaAZHQIvc8BhhH9ZoB03oA2gIR0Crq80WdmQKdX2UKGgGR0CH2DqASWZ7aAdN6ANoCEdAq6yxN9H+ZXV9lChoBkdAiqy5OafBe2gHTegDaAhHQKuu24iosI51fZQoaAZHQIskGEqUeMhoB03oA2gIR0CruXY0l7dBdX2UKGgGR0CNk7EtNBWxaAdN6ANoCEdAq7n56rvLHXV9lChoBkdAi614BV+7UWgHTegDaAhHQKu62r1/UfB1fZQoaAZHQIkpPFPznRtoB03oA2gIR0CrvPt7BwdbdX2UKGgGR0CFBAur6tT2aAdN6ANoCEdAq8VLVBlcyHV9lChoBkdAgxOfHHWBjGgHTegDaAhHQKvF1Q0oBq91fZQoaAZHQIXc0CYCyQhoB03oA2gIR0Crxre4smOVdX2UKGgGR0CLDB+T/yXlaAdN6ANoCEdAq8jjvPTodXV9lChoBkdAjVwVJlJ6IGgHTegDaAhHQKvTkH0K7Zp1fZQoaAZHQIkSHDpC8e1oB03oA2gIR0Cr1CAU1yeadX2UKGgGR0CJYPPNVzZIaAdN6ANoCEdAq9UAPEsJ6nV9lChoBkdAjKE+lj3Eh2gHTegDaAhHQKvXGTh5xBF1fZQoaAZHQI1Gq/yoXKtoB03oA2gIR0Cr34knTiKjdX2UKGgGR0COSCj5bhWHaAdN6ANoCEdAq+AUdJaq0nV9lChoBkdAi48Qg9vCM2gHTegDaAhHQKvg/vMr3Cd1fZQoaAZHQJAlVacI7eVoB03oA2gIR0Cr4xp4bCJodX2UKGgGR0CKa3xn3+MqaAdN6ANoCEdAq+3RQWN3n3V9lChoBkdAiX+gf+0gKWgHTegDaAhHQKvuWXUpd8l1fZQoaAZHQIll3+GXXy1oB03oA2gIR0Cr70alDWsjdX2UKGgGR0CLV4WhysCDaAdN6ANoCEdAq/FtBt1p03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc846f16b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc846f16b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc846f16c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc846f16cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fc846f16d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc846f16dd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc846f16e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc846f16ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc846f16f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc846f17010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc846f170a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc846f17130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690822564105464174, "learning_rate": 0.00095, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PIS13MY/FhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAHNIrx0w7w/ACTOvwHrHz+F+b0/UyqiPxDCoT9mHMc9S4Vgvs4uET8/1ME/rzq2vBMK/74bdFFAz7bvvxlicj2pdSi/VNFIP2s0AT/3/eO90qyvPxobXD1zF9o94mSePjh1gz9eCvM+ziTGPpYJFT831l0/hE+0P1qArr/tuVY+jhxSv+U3qD8D38A/vUpBvw1uf7+jrJg8knnLPdOAb8BN8ZU/2ViEvdaI1L+ww+M+9abRvzgaq78dOxg+DE81wHlSZD+OmnO/ZcaZP/6Cnj4iRHm/XgrzPvZfJcCWCRU/wy7jPqYP/z5hfCg+8SSWPviK3z+8ShE/6/9mPwPrdT1JRDO/QeIJwA/jzj/kZCS/wuRaPzdD5D7Gqzm/EgWNPlf37T5sU92+LyL9Pp7PJD0wrP29895Iv4LZyr65h2O+OHWDP14K8z7OJMY+lgkVP0Gpsj+t4Hw+GT26PoO6Iz87uKw9M+5av7pDlT8V99O/VGp/vz3Bm7rocIm/FjF6PuQYlT9oCjO83TgCPwc+KEA4vtK/qwzwvO5A/D4V9IU8zNEivzyZV74toqk/f9UOPyJEeb9E0wbAziTGPpYJFT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACXEXO2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuGciPQAAAABIDOq/AAAAAAkvXb0AAAAAK5fzPwAAAAChdnE9AAAAAEWM+j8AAAAAG3fsPQAAAACigOC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEeICNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgL2SLr0AAAAAiTT/vwAAAABD2fU6AAAAAB5W+T8AAAAAsT2KPQAAAADZWQBAAAAAAK2J1jwAAAAAoLj8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALHL3zYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOmA2+AAAAAH6h378AAAAAWYMKPgAAAAAVq+8/AAAAALwlEj0AAAAAUWLZPwAAAAAO0QM9AAAAAD7j3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0FW02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh6ULPQAAAACdAOO/AAAAAJDEvj0AAAAA1yb7PwAAAACZo6c9AAAAAOgU3z8AAAAATAM7vAAAAAC7fdq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQI8WhbB42TCMAWyUTegDjAF0lEdAtCrau/1xsHV9lChoBkdAjjF5y2hIv2gHTegDaAhHQLQrybM5fdB1fZQoaAZHQIpr76UJOWVoB03oA2gIR0C0LgYczZYgdX2UKGgGR0CPcpxXGOuJaAdN6ANoCEdAtC80bbUPQXV9lChoBkdAjAxuh0yP/GgHTegDaAhHQLQyUQBxPwd1fZQoaAZHQI6G4mVqveRoB03oA2gIR0C0M4BrSE13dX2UKGgGR0CIeLWmxdIHaAdN6ANoCEdAtDWyeg+Ql3V9lChoBkdAiwQ5n+Q2dmgHTegDaAhHQLQ22zvZyuJ1fZQoaAZHQI5bLzbvgFZoB03oA2gIR0C0OPu1KGtZdX2UKGgGR0CJ7t2ovSMMaAdN6ANoCEdAtDnn9m6GxnV9lChoBkdAjkKFbu+h5GgHTegDaAhHQLQ8JFbmlqJ1fZQoaAZHQIt+7iGWUr1oB03oA2gIR0C0PXOXZ5AydX2UKGgGR0CQJxFSbYseaAdN6ANoCEdAtECbuJDVpnV9lChoBkdAkBqMmOU+tGgHTegDaAhHQLRBjIClrM11fZQoaAZHQJFOs176YVtoB03oA2gIR0C0Q8vcWTHKdX2UKGgGR0CQ2thbnoxIaAdN6ANoCEdAtET/FdcB2nV9lChoBkdAkIGhdUsFuGgHTegDaAhHQLRHHzijtXx1fZQoaAZHQI8w730wrUdoB03oA2gIR0C0SBCcXm/4dX2UKGgGR0CMWfFrEcbSaAdN6ANoCEdAtEsWQCCBgHV9lChoBkdAj3DSdOIqLGgHTegDaAhHQLRNdtjkMkR1fZQoaAZHQJEKq5NGmUJoB03oA2gIR0C0UI+z2OABdX2UKGgGR0CKTCX0oSctaAdN6ANoCEdAtFF9j5Kvm3V9lChoBkdAkYmfZZjhDWgHTegDaAhHQLRTxXSBshx1fZQoaAZHQI6g3aURnOBoB03oA2gIR0C0VPj+NtIkdX2UKGgGR0CQis/lyR0VaAdN6ANoCEdAtFcmD/VAiXV9lChoBkdAkHsP/NqxkmgHTegDaAhHQLRYEradtl91fZQoaAZHQI6P8mv4dp9oB03oA2gIR0C0WqmNWEK3dX2UKGgGR0CQtwTmnwXqaAdN6ANoCEdAtFxzvoePrHV9lChoBkdAj74UPYnOSmgHTegDaAhHQLRe3azu4PR1fZQoaAZHQJAqpdxAB1doB03oA2gIR0C0X8mOyVv/dX2UKGgGR0CFxJ4W1twaaAdN6ANoCEdAtGIBv/BFeHV9lChoBkdAjdYBi1Aqu2gHTegDaAhHQLRjNMW43FV1fZQoaAZHQJCfNiMHbAVoB03oA2gIR0C0ZWAWFev7dX2UKGgGR0CRYesDGLk0aAdN6ANoCEdAtGZTIbOu73V9lChoBkdAiKUBun/DL2gHTegDaAhHQLRpJlXzUZx1fZQoaAZHQJJSToUzsQdoB03oA2gIR0C0atiSmqHXdX2UKGgGR0CQnsAI6bONaAdN6ANoCEdAtGz/2alUInV9lChoBkdAkL/O4LCvYGgHTegDaAhHQLRt5ngpBop1fZQoaAZHQJD+llg+hXdoB03oA2gIR0C0cBP+wTufdX2UKGgGR0CRq9vOyE+QaAdN6ANoCEdAtHE6tQsPKHV9lChoBkdAjfujL0SRKmgHTegDaAhHQLRzWnuiN851fZQoaAZHQJIh/VtoBaNoB03oA2gIR0C0dEHKSxJNdX2UKGgGR0CSkPrqdH2AaAdN6ANoCEdAtHdGmQ8wH3V9lChoBkdAkdTWjwhGIGgHTegDaAhHQLR4yTrmhdt1fZQoaAZHQJGC97WuoxZoB03oA2gIR0C0euwGSpzcdX2UKGgGR0CQyPWUbDMvaAdN6ANoCEdAtHvYyRB/qnV9lChoBkdAkFxX49HMEGgHTegDaAhHQLR+B9FnZkF1fZQoaAZHQJFRCW6bvw5oB03oA2gIR0C0fy31SOzZdX2UKGgGR0CQoZl3yI56aAdN6ANoCEdAtIFJ0+1SfnV9lChoBkdAkY0NwaR6nmgHTegDaAhHQLSCNpQUHpt1fZQoaAZHQJDKY7HQyARoB03oA2gIR0C0hZ73XZoPdX2UKGgGR0CRAYqZc9nsaAdN6ANoCEdAtIblgssg+3V9lChoBkdAjvJ28AaNuWgHTegDaAhHQLSJAK5TZQJ1fZQoaAZHQJBR5uYQarFoB03oA2gIR0C0iemiYb84dX2UKGgGR0CM2Rj6vaDgaAdN6ANoCEdAtIwiyzHCGnV9lChoBkdAj4ywMpgCwWgHTegDaAhHQLSNSd5Y5kt1fZQoaAZHQJAQc7fYSQJoB03oA2gIR0C0j2XmvGIbdX2UKGgGR0CQIE8qnWJ8aAdN6ANoCEdAtJCPmLcbi3V9lChoBkdAkKDnU+cH4WgHTegDaAhHQLSTpVf/m1Z1fZQoaAZHQI47hvP1L8JoB03oA2gIR0C0lOjoIOYqdX2UKGgGR0CQl+okiUxEaAdN6ANoCEdAtJdCEmICVHV9lChoBkdAkSqCPyTY/WgHTegDaAhHQLSYQDHfdh11fZQoaAZHQI5KagVXV9ZoB03oA2gIR0C0mplx0dR0dX2UKGgGR0CRGmw+dK/VaAdN6ANoCEdAtJvJjlPrOnV9lChoBkdAkGt6n752yWgHTegDaAhHQLSeTmseXAx1fZQoaAZHQJBJPicXm/5oB03oA2gIR0C0n7FV5rxidX2UKGgGR0CQWMQxN7BwaAdN6ANoCEdAtKJzj94u9XV9lChoBkdAkNjFq33HrGgHTegDaAhHQLSjqNL127p1fZQoaAZHQI6C7CHh0hhoB03oA2gIR0C0pdRhYvFndX2UKGgGR0CRgglV94NaaAdN6ANoCEdAtKbGB3A2ynV9lChoBkdAkRubJbMX8GgHTegDaAhHQLSpHQ40dil1fZQoaAZHQJDYKfWcz69oB03oA2gIR0C0qlf/echDdX2UKGgGR0CQwGgqEvkBaAdN6ANoCEdAtK1Qal1r7HV9lChoBkdAkUImFajesWgHTegDaAhHQLSutpJwsGx1fZQoaAZHQJCW+9RJmNBoB03oA2gIR0C0sRHZkCmudX2UKGgGR0CRDZq4H5aeaAdN6ANoCEdAtLJbPcBU73V9lChoBkdAkGzWT1TR6WgHTegDaAhHQLS0tPAfuCx1fZQoaAZHQJBlVTMqz7doB03oA2gIR0C0tbFtsN2DdX2UKGgGR0CPpTp35eqraAdN6ANoCEdAtLgKKwY+CHV9lChoBkdAkQ3FjmSyMWgHTegDaAhHQLS5pHeaa1F1fZQoaAZHQJIr39If8uVoB03oA2gIR0C0vLgq7ROUdX2UKGgGR0CTBzJjUd7waAdN6ANoCEdAtL2zLMcIaHV9lChoBkdAkBHErTYukGgHTegDaAhHQLS/9TgEU0x1fZQoaAZHQJDWAZFXq7loB03oA2gIR0C0wSRTsIE9dX2UKGgGR0CQ2WbuMMqjaAdN6ANoCEdAtMNGkZaV2XV9lChoBkdAkG4gBxPweGgHTegDaAhHQLTELV9nbqR1fZQoaAZHQJIBMipvP1NoB03oA2gIR0C0xoYIrvsrdX2UKGgGR0CRSoReTmnwaAdN6ANoCEdAtMg/Jp35e3V9lChoBkdAj/Cln7Hhj2gHTegDaAhHQLTK3mHP/rB1fZQoaAZHQIxO9tdiUgVoB03oA2gIR0C0y8rmQr+YdX2UKGgGR0CQxXlHSWqtaAdN6ANoCEdAtM4HL4etCHV9lChoBkdAkABWNrCWNWgHTegDaAhHQLTPQjnFHax1fZQoaAZHQIz05OUMXrNoB03oA2gIR0C00Xl+Vkc0dX2UKGgGR0CP8NN/vv0AaAdN6ANoCEdAtNJsnv2GqXV9lChoBkdAkHltZq20A2gHTegDaAhHQLTVNX4j8k51fZQoaAZHQJCaGBd2PktoB03oA2gIR0C01wlk1/DtdX2UKGgGR0CQWWAGjbi7aAdN6ANoCEdAtNlB4D9wWHV9lChoBkdAkLrgQ6IWQGgHTegDaAhHQLTaNhjOLR91fZQoaAZHQJAImiZfD1poB03oA2gIR0C03IDVH4GmdX2UKGgGR0CNymuxrzoVaAdN6ANoCEdAtN3DMRpUP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 93750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 752.7101076379593, "std_reward": 94.64913725822336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T16:03:10.791018"}
 
1
+ {"mean_reward": 1018.9342424663133, "std_reward": 105.2587022773273, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T18:25:31.920181"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df3bd102b5da70aa4e7bbd3d00b960419c91ac870023a562fb9990502ec5b679
3
- size 2163
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e024f297eea019e9249194ff0da7e440971b54515700a0ed5aa007239f35aef4
3
+ size 2176