Initial commit
Browse files- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +104 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 752.71 +/- 94.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32dafa910f7c9da6710ba74b226dbd4c5e7001cb11b7c61bb54bed06b49ea31a
|
3 |
+
size 128400
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc846f16b00>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc846f16b90>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc846f16c20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc846f16cb0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc846f16d40>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc846f16dd0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc846f16e60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc846f16ef0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc846f16f80>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc846f17010>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc846f170a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc846f17130>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"num_timesteps": 2000000,
|
36 |
+
"_total_timesteps": 2000000,
|
37 |
+
"_num_timesteps_at_start": 0,
|
38 |
+
"seed": null,
|
39 |
+
"action_noise": null,
|
40 |
+
"start_time": 1690815827723608601,
|
41 |
+
"learning_rate": 0.001,
|
42 |
+
"tensorboard_log": null,
|
43 |
+
"lr_schedule": {
|
44 |
+
":type:": "<class 'function'>",
|
45 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
46 |
+
},
|
47 |
+
"_last_obs": {
|
48 |
+
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABcuS76A47U9Bv1+P+b8az0dgTK9x0YZPan8Fb40pf+9/1AavwtALL65bDO8uKNJvGcnBz8AB2i+tSF6PwB0r714XV4/y7k9vqE+X76CtMO8Gi+APxDRl7uOXIm/DuqMvwAAgD8AAIA/AACAPwAAAABOaAe+ury1PoFUbz+GoYU99b22Pb8ryztZJyM9b6x5vbcFgL8nN1E6L69Nv7VEqr2i2kI9tOY/PqNYzr1UGKq7dntMP87xGj1uPxQ+sKKIPYkBlD4OQDy9JWPJPjOXZzgAAAAAAACAPwAAgD8AAIA/XvJvvlT/gb3Xe38/t8UKPrNC3z12HKI8EJmcvSITpTtsLYA/rE+vu12GNb9YW+E9MnB8PpgxAT5HaRc/4YxvvJN2CD9YvDy+hpvvPR3z3T2lGAk/pMxlPvREeb9Uov49AACAPwAAgD8AAIA/AAAAALMfCL5/pNa8gOl/P0tWEz4SrB6+gtQvvQrAxj2EfNu9OJiHv8g/2ziBmRY/+mYbv//vPD4ZK+Q+Y7zrvR1joj1Zchk+xO5zPqijgT9LZGI+HcYaP5tIEr/hqX4/Na3iPQAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
+
},
|
51 |
+
"_last_episode_starts": {
|
52 |
+
":type:": "<class 'numpy.ndarray'>",
|
53 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
54 |
+
},
|
55 |
+
"_last_original_obs": null,
|
56 |
+
"_episode_num": 0,
|
57 |
+
"use_sde": true,
|
58 |
+
"sde_sample_freq": -1,
|
59 |
+
"_current_progress_remaining": 0.0,
|
60 |
+
"_stats_window_size": 100,
|
61 |
+
"ep_info_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa5Li2lVLmMAWyUTegDjAF0lEdAqrGt12aDw3V9lChoBkdAh95zF2mpEWgHTegDaAhHQKq00+t8uz11fZQoaAZHQIVRqrzXjENoB03oA2gIR0Cqt/fOMVDbdX2UKGgGR0CGVVQemvW6aAdN6ANoCEdAqrlgInjQzHV9lChoBkdAhQT3/HYHxGgHTegDaAhHQKq948mrsB11fZQoaAZHQG4scGcFyJdoB028AWgIR0CqvstzKcNIdX2UKGgGR0CGOB7dBSk1aAdN6ANoCEdAqsG87QswtnV9lChoBkdAhHDXo9s7+2gHTegDaAhHQKrGQcriEQJ1fZQoaAZHQG7vf5DZ13doB026AWgIR0Cqy4Ftj0+UdX2UKGgGR0CE2WDaGpMpaAdN6ANoCEdAqswHNzKcNHV9lChoBkdAhZUCudPLxWgHTegDaAhHQKrM6mx+rlx1fZQoaAZHQIU77ZL7GedoB03oA2gIR0CqzwYf4h2XdX2UKGgGR0CCmJmL9/BnaAdN6ANoCEdAqtd0Oy3TeHV9lChoBkdAgy8Lnkkrw2gHTegDaAhHQKrYAzdDYyx1fZQoaAZHQIIYN7SiM5xoB03oA2gIR0Cq2O1jy4FzdX2UKGgGR0CEqisAeaKDaAdN6ANoCEdAqtuRvDP4VXV9lChoBkdAhQVh8pkPMGgHTegDaAhHQKrl5NL127p1fZQoaAZHQISx/uJDVpdoB03oA2gIR0Cq5m4Ny5qedX2UKGgGR0CE1MhcJMQFaAdN6ANoCEdAqudSUmlZYHV9lChoBkdAhZHCnxaxHGgHTegDaAhHQKrpcVRDTjN1fZQoaAZHQIazmzposZpoB03oA2gIR0Cq8frWRRuTdX2UKGgGR0CHikd/axoqaAdN6ANoCEdAqvKECo0hvHV9lChoBkdAhYAT3RG+bmgHTegDaAhHQKrzay5Zr591fZQoaAZHQIY5amXPZ7JoB03oA2gIR0Cq9coCEHt4dX2UKGgGR0B5fDcrRSgoaAdN6ANoCEdAqwB72tdRi3V9lChoBkdAhqeDLKV6eGgHTegDaAhHQKsBCumrKeV1fZQoaAZHQIlcsju8brFoB03oA2gIR0CrAfDkU9IPdX2UKGgGR0CGZvVDKHO9aAdN6ANoCEdAqwQYo/iYLXV9lChoBkdAhj17wz+FUWgHTegDaAhHQKsMopEx7At1fZQoaAZHQIR49mJ3xF1oB03oA2gIR0CrDTJlJ6IFdX2UKGgGR0CGqTwvxpcpaAdN6ANoCEdAqw4eQ4jrzHV9lChoBkdAhWWrPUrkKmgHTegDaAhHQKsQVPmgam51fZQoaAZHQIeMZ6OYIB1oB03oA2gIR0CrGxSauwHJdX2UKGgGR0CIcZtFa0QcaAdN6ANoCEdAqxueZiNKiHV9lChoBkdAhnyYISlFdGgHTegDaAhHQKscka8YhuB1fZQoaAZHQIYW82NvOyFoB03oA2gIR0CrHsqPfbbldX2UKGgGR0CD2I6VdHDraAdN6ANoCEdAqydMdgfEGnV9lChoBkdAhM3ZfUnXumgHTegDaAhHQKsn1hZQpF11fZQoaAZHQIQ7Md1dPcloB03oA2gIR0CrKL0KRdQgdX2UKGgGR0CExMx/NJOGaAdN6ANoCEdAqyrl+Vkc0nV9lChoBkdAhXfe+/QBxWgHTegDaAhHQKs1unx8UmF1fZQoaAZHQIXbJeJHiFVoB03oA2gIR0CrNk1e0G/vdX2UKGgGR0CGg78jzI3jaAdN6ANoCEdAqzc15fMOgHV9lChoBkdAhUxiCz1K5GgHTegDaAhHQKs5WT6i0v51fZQoaAZHQIBzWKqGUOdoB03oA2gIR0CrQeO7HyVfdX2UKGgGR0CCQRNBWxQjaAdN6ANoCEdAq0JucjJMg3V9lChoBkdAgosVGCqZMWgHTegDaAhHQKtDWX/o7mx1fZQoaAZHQIeANH2AXl9oB03oA2gIR0CrRYJ3xFy8dX2UKGgGR0CEUFOclPadaAdN6ANoCEdAq1Bu8dxQznV9lChoBkdAhdjFjd56dGgHTegDaAhHQKtQ/aoMrmR1fZQoaAZHQITkYFJQLuxoB03oA2gIR0CrUehMajvedX2UKGgGR0CEm8EkjX4CaAdN6ANoCEdAq1QEcENe+nV9lChoBkdAhiZDQiRnvmgHTegDaAhHQKtchrFfiP11fZQoaAZHQIXHjgKnei1oB03oA2gIR0CrXRBCdBjXdX2UKGgGR0CKKhOpKjBVaAdN6ANoCEdAq13803wTd3V9lChoBkdAg31pWNm16WgHTegDaAhHQKtgDezlcQl1fZQoaAZHQIzkgBgeA/doB03oA2gIR0CrasDTBqKxdX2UKGgGR0CO28SV4X41aAdN6ANoCEdAq2tOvbGm13V9lChoBkdAi76vtMPBi2gHTegDaAhHQKtsQETQE6l1fZQoaAZHQIubkgGKQ7toB03oA2gIR0CrbmvECNjtdX2UKGgGR0CFD3Ba9sabaAdN6ANoCEdAq3b6pLmITHV9lChoBkdAgEbw/X5FgGgHTegDaAhHQKt3hNfPX051fZQoaAZHQIr27HsC1Z1oB03oA2gIR0CreGkUKzAvdX2UKGgGR0CKuK++ueSTaAdN6ANoCEdAq3qPhZQpF3V9lChoBkdAjf5E25xzaWgHTegDaAhHQKuFStJ4B3l1fZQoaAZHQIw+9mnO0LNoB03oA2gIR0Crhc3vhIe6dX2UKGgGR0CLkO2BreqJaAdN6ANoCEdAq4a4iJO32HV9lChoBkdAkAFYAS39aWgHTegDaAhHQKuIzYZl4C91fZQoaAZHQI48xzPrv9doB03oA2gIR0CrkTl3hXKbdX2UKGgGR0CLryc1fmcOaAdN6ANoCEdAq5G+qioKlnV9lChoBkdAhvrTUy57PmgHTegDaAhHQKuSph/Aj6h1fZQoaAZHQIMbIgDA8CBoB03oA2gIR0CrlMrt/nW8dX2UKGgGR0CJ2bIqbz9TaAdN6ANoCEdAq59mK8+Ro3V9lChoBkdAimJAIY3vQWgHTegDaAhHQKuf7FjNILB1fZQoaAZHQI9MNR1oxpNoB03oA2gIR0CroNDvd/KAdX2UKGgGR0CLg4cHWz4UaAdN6ANoCEdAq6Lni97F9HV9lChoBkdAilcC79Q40mgHTegDaAhHQKurQYE4ecR1fZQoaAZHQIvc8BhhH9ZoB03oA2gIR0Crq80WdmQKdX2UKGgGR0CH2DqASWZ7aAdN6ANoCEdAq6yxN9H+ZXV9lChoBkdAiqy5OafBe2gHTegDaAhHQKuu24iosI51fZQoaAZHQIskGEqUeMhoB03oA2gIR0CruXY0l7dBdX2UKGgGR0CNk7EtNBWxaAdN6ANoCEdAq7n56rvLHXV9lChoBkdAi614BV+7UWgHTegDaAhHQKu62r1/UfB1fZQoaAZHQIkpPFPznRtoB03oA2gIR0CrvPt7BwdbdX2UKGgGR0CFBAur6tT2aAdN6ANoCEdAq8VLVBlcyHV9lChoBkdAgxOfHHWBjGgHTegDaAhHQKvF1Q0oBq91fZQoaAZHQIXc0CYCyQhoB03oA2gIR0Crxre4smOVdX2UKGgGR0CLDB+T/yXlaAdN6ANoCEdAq8jjvPTodXV9lChoBkdAjVwVJlJ6IGgHTegDaAhHQKvTkH0K7Zp1fZQoaAZHQIkSHDpC8e1oB03oA2gIR0Cr1CAU1yeadX2UKGgGR0CJYPPNVzZIaAdN6ANoCEdAq9UAPEsJ6nV9lChoBkdAjKE+lj3Eh2gHTegDaAhHQKvXGTh5xBF1fZQoaAZHQI1Gq/yoXKtoB03oA2gIR0Cr34knTiKjdX2UKGgGR0COSCj5bhWHaAdN6ANoCEdAq+AUdJaq0nV9lChoBkdAi48Qg9vCM2gHTegDaAhHQKvg/vMr3Cd1fZQoaAZHQJAlVacI7eVoB03oA2gIR0Cr4xp4bCJodX2UKGgGR0CKa3xn3+MqaAdN6ANoCEdAq+3RQWN3n3V9lChoBkdAiX+gf+0gKWgHTegDaAhHQKvuWXUpd8l1fZQoaAZHQIll3+GXXy1oB03oA2gIR0Cr70alDWsjdX2UKGgGR0CLV4WhysCDaAdN6ANoCEdAq/FtBt1p03VlLg=="
|
64 |
+
},
|
65 |
+
"ep_success_buffer": {
|
66 |
+
":type:": "<class 'collections.deque'>",
|
67 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
68 |
+
},
|
69 |
+
"_n_updates": 62500,
|
70 |
+
"n_steps": 8,
|
71 |
+
"gamma": 0.99,
|
72 |
+
"gae_lambda": 0.9,
|
73 |
+
"ent_coef": 0.0,
|
74 |
+
"vf_coef": 0.4,
|
75 |
+
"max_grad_norm": 0.5,
|
76 |
+
"normalize_advantage": true,
|
77 |
+
"observation_space": {
|
78 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"_shape": [
|
82 |
+
28
|
83 |
+
],
|
84 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
85 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
86 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
87 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
88 |
+
"_np_random": null
|
89 |
+
},
|
90 |
+
"action_space": {
|
91 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
92 |
+
":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
93 |
+
"dtype": "float32",
|
94 |
+
"_shape": [
|
95 |
+
8
|
96 |
+
],
|
97 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
98 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
99 |
+
"bounded_below": "[ True True True True True True True True]",
|
100 |
+
"bounded_above": "[ True True True True True True True True]",
|
101 |
+
"_np_random": null
|
102 |
+
},
|
103 |
+
"n_envs": 4
|
104 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d8f63a37313437d0819995c97eb7dc1529ba8540628f6281f07330a211f4496
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3ecb071cde1772f992780cac6e5102e9ddad72ea94ad96089915c213f9e5ade
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc846f16b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc846f16b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc846f16c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc846f16cb0>", "_build": "<function ActorCriticPolicy._build at 0x7fc846f16d40>", "forward": "<function ActorCriticPolicy.forward at 0x7fc846f16dd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc846f16e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc846f16ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc846f16f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc846f17010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc846f170a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc846f17130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc846f07640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690815827723608601, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAABcuS76A47U9Bv1+P+b8az0dgTK9x0YZPan8Fb40pf+9/1AavwtALL65bDO8uKNJvGcnBz8AB2i+tSF6PwB0r714XV4/y7k9vqE+X76CtMO8Gi+APxDRl7uOXIm/DuqMvwAAgD8AAIA/AACAPwAAAABOaAe+ury1PoFUbz+GoYU99b22Pb8ryztZJyM9b6x5vbcFgL8nN1E6L69Nv7VEqr2i2kI9tOY/PqNYzr1UGKq7dntMP87xGj1uPxQ+sKKIPYkBlD4OQDy9JWPJPjOXZzgAAAAAAACAPwAAgD8AAIA/XvJvvlT/gb3Xe38/t8UKPrNC3z12HKI8EJmcvSITpTtsLYA/rE+vu12GNb9YW+E9MnB8PpgxAT5HaRc/4YxvvJN2CD9YvDy+hpvvPR3z3T2lGAk/pMxlPvREeb9Uov49AACAPwAAgD8AAIA/AAAAALMfCL5/pNa8gOl/P0tWEz4SrB6+gtQvvQrAxj2EfNu9OJiHv8g/2ziBmRY/+mYbv//vPD4ZK+Q+Y7zrvR1joj1Zchk+xO5zPqijgT9LZGI+HcYaP5tIEr/hqX4/Na3iPQAAAAAAAIA/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIa5Li2lVLmMAWyUTegDjAF0lEdAqrGt12aDw3V9lChoBkdAh95zF2mpEWgHTegDaAhHQKq00+t8uz11fZQoaAZHQIVRqrzXjENoB03oA2gIR0Cqt/fOMVDbdX2UKGgGR0CGVVQemvW6aAdN6ANoCEdAqrlgInjQzHV9lChoBkdAhQT3/HYHxGgHTegDaAhHQKq948mrsB11fZQoaAZHQG4scGcFyJdoB028AWgIR0CqvstzKcNIdX2UKGgGR0CGOB7dBSk1aAdN6ANoCEdAqsG87QswtnV9lChoBkdAhHDXo9s7+2gHTegDaAhHQKrGQcriEQJ1fZQoaAZHQG7vf5DZ13doB026AWgIR0Cqy4Ftj0+UdX2UKGgGR0CE2WDaGpMpaAdN6ANoCEdAqswHNzKcNHV9lChoBkdAhZUCudPLxWgHTegDaAhHQKrM6mx+rlx1fZQoaAZHQIU77ZL7GedoB03oA2gIR0CqzwYf4h2XdX2UKGgGR0CCmJmL9/BnaAdN6ANoCEdAqtd0Oy3TeHV9lChoBkdAgy8Lnkkrw2gHTegDaAhHQKrYAzdDYyx1fZQoaAZHQIIYN7SiM5xoB03oA2gIR0Cq2O1jy4FzdX2UKGgGR0CEqisAeaKDaAdN6ANoCEdAqtuRvDP4VXV9lChoBkdAhQVh8pkPMGgHTegDaAhHQKrl5NL127p1fZQoaAZHQISx/uJDVpdoB03oA2gIR0Cq5m4Ny5qedX2UKGgGR0CE1MhcJMQFaAdN6ANoCEdAqudSUmlZYHV9lChoBkdAhZHCnxaxHGgHTegDaAhHQKrpcVRDTjN1fZQoaAZHQIazmzposZpoB03oA2gIR0Cq8frWRRuTdX2UKGgGR0CHikd/axoqaAdN6ANoCEdAqvKECo0hvHV9lChoBkdAhYAT3RG+bmgHTegDaAhHQKrzay5Zr591fZQoaAZHQIY5amXPZ7JoB03oA2gIR0Cq9coCEHt4dX2UKGgGR0B5fDcrRSgoaAdN6ANoCEdAqwB72tdRi3V9lChoBkdAhqeDLKV6eGgHTegDaAhHQKsBCumrKeV1fZQoaAZHQIlcsju8brFoB03oA2gIR0CrAfDkU9IPdX2UKGgGR0CGZvVDKHO9aAdN6ANoCEdAqwQYo/iYLXV9lChoBkdAhj17wz+FUWgHTegDaAhHQKsMopEx7At1fZQoaAZHQIR49mJ3xF1oB03oA2gIR0CrDTJlJ6IFdX2UKGgGR0CGqTwvxpcpaAdN6ANoCEdAqw4eQ4jrzHV9lChoBkdAhWWrPUrkKmgHTegDaAhHQKsQVPmgam51fZQoaAZHQIeMZ6OYIB1oB03oA2gIR0CrGxSauwHJdX2UKGgGR0CIcZtFa0QcaAdN6ANoCEdAqxueZiNKiHV9lChoBkdAhnyYISlFdGgHTegDaAhHQKscka8YhuB1fZQoaAZHQIYW82NvOyFoB03oA2gIR0CrHsqPfbbldX2UKGgGR0CD2I6VdHDraAdN6ANoCEdAqydMdgfEGnV9lChoBkdAhM3ZfUnXumgHTegDaAhHQKsn1hZQpF11fZQoaAZHQIQ7Md1dPcloB03oA2gIR0CrKL0KRdQgdX2UKGgGR0CExMx/NJOGaAdN6ANoCEdAqyrl+Vkc0nV9lChoBkdAhXfe+/QBxWgHTegDaAhHQKs1unx8UmF1fZQoaAZHQIXbJeJHiFVoB03oA2gIR0CrNk1e0G/vdX2UKGgGR0CGg78jzI3jaAdN6ANoCEdAqzc15fMOgHV9lChoBkdAhUxiCz1K5GgHTegDaAhHQKs5WT6i0v51fZQoaAZHQIBzWKqGUOdoB03oA2gIR0CrQeO7HyVfdX2UKGgGR0CCQRNBWxQjaAdN6ANoCEdAq0JucjJMg3V9lChoBkdAgosVGCqZMWgHTegDaAhHQKtDWX/o7mx1fZQoaAZHQIeANH2AXl9oB03oA2gIR0CrRYJ3xFy8dX2UKGgGR0CEUFOclPadaAdN6ANoCEdAq1Bu8dxQznV9lChoBkdAhdjFjd56dGgHTegDaAhHQKtQ/aoMrmR1fZQoaAZHQITkYFJQLuxoB03oA2gIR0CrUehMajvedX2UKGgGR0CEm8EkjX4CaAdN6ANoCEdAq1QEcENe+nV9lChoBkdAhiZDQiRnvmgHTegDaAhHQKtchrFfiP11fZQoaAZHQIXHjgKnei1oB03oA2gIR0CrXRBCdBjXdX2UKGgGR0CKKhOpKjBVaAdN6ANoCEdAq13803wTd3V9lChoBkdAg31pWNm16WgHTegDaAhHQKtgDezlcQl1fZQoaAZHQIzkgBgeA/doB03oA2gIR0CrasDTBqKxdX2UKGgGR0CO28SV4X41aAdN6ANoCEdAq2tOvbGm13V9lChoBkdAi76vtMPBi2gHTegDaAhHQKtsQETQE6l1fZQoaAZHQIubkgGKQ7toB03oA2gIR0CrbmvECNjtdX2UKGgGR0CFD3Ba9sabaAdN6ANoCEdAq3b6pLmITHV9lChoBkdAgEbw/X5FgGgHTegDaAhHQKt3hNfPX051fZQoaAZHQIr27HsC1Z1oB03oA2gIR0CreGkUKzAvdX2UKGgGR0CKuK++ueSTaAdN6ANoCEdAq3qPhZQpF3V9lChoBkdAjf5E25xzaWgHTegDaAhHQKuFStJ4B3l1fZQoaAZHQIw+9mnO0LNoB03oA2gIR0Crhc3vhIe6dX2UKGgGR0CLkO2BreqJaAdN6ANoCEdAq4a4iJO32HV9lChoBkdAkAFYAS39aWgHTegDaAhHQKuIzYZl4C91fZQoaAZHQI48xzPrv9doB03oA2gIR0CrkTl3hXKbdX2UKGgGR0CLryc1fmcOaAdN6ANoCEdAq5G+qioKlnV9lChoBkdAhvrTUy57PmgHTegDaAhHQKuSph/Aj6h1fZQoaAZHQIMbIgDA8CBoB03oA2gIR0CrlMrt/nW8dX2UKGgGR0CJ2bIqbz9TaAdN6ANoCEdAq59mK8+Ro3V9lChoBkdAimJAIY3vQWgHTegDaAhHQKuf7FjNILB1fZQoaAZHQI9MNR1oxpNoB03oA2gIR0CroNDvd/KAdX2UKGgGR0CLg4cHWz4UaAdN6ANoCEdAq6Lni97F9HV9lChoBkdAilcC79Q40mgHTegDaAhHQKurQYE4ecR1fZQoaAZHQIvc8BhhH9ZoB03oA2gIR0Crq80WdmQKdX2UKGgGR0CH2DqASWZ7aAdN6ANoCEdAq6yxN9H+ZXV9lChoBkdAiqy5OafBe2gHTegDaAhHQKuu24iosI51fZQoaAZHQIskGEqUeMhoB03oA2gIR0CruXY0l7dBdX2UKGgGR0CNk7EtNBWxaAdN6ANoCEdAq7n56rvLHXV9lChoBkdAi614BV+7UWgHTegDaAhHQKu62r1/UfB1fZQoaAZHQIkpPFPznRtoB03oA2gIR0CrvPt7BwdbdX2UKGgGR0CFBAur6tT2aAdN6ANoCEdAq8VLVBlcyHV9lChoBkdAgxOfHHWBjGgHTegDaAhHQKvF1Q0oBq91fZQoaAZHQIXc0CYCyQhoB03oA2gIR0Crxre4smOVdX2UKGgGR0CLDB+T/yXlaAdN6ANoCEdAq8jjvPTodXV9lChoBkdAjVwVJlJ6IGgHTegDaAhHQKvTkH0K7Zp1fZQoaAZHQIkSHDpC8e1oB03oA2gIR0Cr1CAU1yeadX2UKGgGR0CJYPPNVzZIaAdN6ANoCEdAq9UAPEsJ6nV9lChoBkdAjKE+lj3Eh2gHTegDaAhHQKvXGTh5xBF1fZQoaAZHQI1Gq/yoXKtoB03oA2gIR0Cr34knTiKjdX2UKGgGR0COSCj5bhWHaAdN6ANoCEdAq+AUdJaq0nV9lChoBkdAi48Qg9vCM2gHTegDaAhHQKvg/vMr3Cd1fZQoaAZHQJAlVacI7eVoB03oA2gIR0Cr4xp4bCJodX2UKGgGR0CKa3xn3+MqaAdN6ANoCEdAq+3RQWN3n3V9lChoBkdAiX+gf+0gKWgHTegDaAhHQKvuWXUpd8l1fZQoaAZHQIll3+GXXy1oB03oA2gIR0Cr70alDWsjdX2UKGgGR0CLV4WhysCDaAdN6ANoCEdAq/FtBt1p03VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": true, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (898 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 752.7101076379593, "std_reward": 94.64913725822336, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-31T16:03:10.791018"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df3bd102b5da70aa4e7bbd3d00b960419c91ac870023a562fb9990502ec5b679
|
3 |
+
size 2163
|