mrm8488's picture
Update README.md
1fefda9
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - samsum
metrics:
  - rouge
model-index:
  - name: flan-t5-large-finetuned-samsum
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: samsum
          type: samsum
          config: samsum
          split: train
          args: samsum
        metrics:
          - name: Rouge1
            type: rouge
            value: 48.8719
widget:
  - text: |-
      Sid: Wanna catch a movie?
      Annie: sure what do you have in mind?
      Sid; the Aquaman? :D
      Annie: haha isn't it a bit childish
      Sid: noooooo I mean yes but it's the highest grossing movie this week
      Annie: seriously?
      Sid: yeah?
      Annie: okay let's see what the fuss is all about

flan-t5-large-finetuned-samsum

This model is a fine-tuned version of google/flan-t5-large on the samsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2099
  • Rouge1: 48.8719
  • Rouge2: 25.5658
  • Rougel: 41.6686
  • Rougelsum: 45.2419
  • Gen Len: 17.1880

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1871 1.0 1842 1.2099 48.8719 25.5658 41.6686 45.2419 17.1880
1.0344 2.0 3684 1.2168 48.9633 25.5702 41.449 45.2238 17.3810
0.9457 3.0 5526 1.2322 49.2708 25.8481 41.9485 45.3808 17.1392
0.8706 4.0 7368 1.2459 49.4742 26.3099 42.0051 45.4181 17.2369
0.8173 5.0 9210 1.2660 49.5398 26.1602 41.9861 45.4851 17.3040

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2