mrm8488's picture
End of training
55e434a
metadata
tags:
  - generated_from_trainer
datasets:
  - go_emotions
metrics:
  - accuracy
  - f1
model-index:
  - name: electricidad-base-finetuned-go_emotions-es-2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: go_emotions
          type: go_emotions
          config: simplified
          split: train
          args: simplified
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5591468777484608
          - name: F1
            type: f1
            value: 0.5581665299693344

electricidad-base-finetuned-go_emotions-es-2

This model is a fine-tuned version of mrm8488/electricidad-base-discriminator on the go_emotions dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0837
  • Accuracy: 0.5591
  • F1: 0.5582

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.7525 1.0 2270 1.6088 0.5618 0.5076
1.4522 2.0 4540 1.4687 0.5807 0.5534
1.2798 3.0 6810 1.4550 0.5910 0.5773
1.0825 4.0 9080 1.5068 0.5873 0.5726
0.9214 5.0 11350 1.6168 0.5776 0.5743
0.7696 6.0 13620 1.7338 0.5776 0.5722
0.6688 7.0 15890 1.8733 0.5631 0.5596
0.553 8.0 18160 1.9571 0.5574 0.5591
0.4626 9.0 20430 2.0499 0.5646 0.5625
0.4399 10.0 22700 2.0837 0.5591 0.5582

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1