lewtun's picture
lewtun HF staff
Add evaluation results on the mrpc config of glue
642d9bd
|
raw
history blame
3.35 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
  - deberta-v3
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: deberta-v3-small
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MRPC
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8921568627450981
          - name: F1
            type: f1
            value: 0.9233449477351917
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8921568627450981
            verified: true
          - name: Precision
            type: precision
            value: 0.8983050847457628
            verified: true
          - name: Recall
            type: recall
            value: 0.9498207885304659
            verified: true
          - name: AUC
            type: auc
            value: 0.9516129032258065
            verified: true
          - name: F1
            type: f1
            value: 0.9233449477351917
            verified: true
          - name: loss
            type: loss
            value: 0.2787226438522339
            verified: true

DeBERTa v3 (small) fine-tuned on MRPC

This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE MRPC dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2787
  • Accuracy: 0.8922
  • F1: 0.9233
  • Combined Score: 0.9078

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Combined Score
No log 1.0 230 0.2787 0.8922 0.9233 0.9078
No log 2.0 460 0.3651 0.875 0.9137 0.8944
No log 3.0 690 0.5238 0.8799 0.9179 0.8989
No log 4.0 920 0.4712 0.8946 0.9222 0.9084
0.2147 5.0 1150 0.5704 0.8946 0.9262 0.9104
0.2147 6.0 1380 0.5697 0.8995 0.9284 0.9140
0.2147 7.0 1610 0.6651 0.8922 0.9214 0.9068
0.2147 8.0 1840 0.6726 0.8946 0.9239 0.9093
0.0183 9.0 2070 0.7250 0.8848 0.9177 0.9012
0.0183 10.0 2300 0.7093 0.8922 0.9223 0.9072

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.15.1
  • Tokenizers 0.10.3