codeBERTaJS / README.md
julien-c's picture
julien-c HF staff
Migrate model card from transformers-repo
c0a8824
|
raw
history blame
2.7 kB
---
language: code
thumbnail:
---
# CodeBERTaJS
CodeBERTaJS is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `javaScript` by [Manuel Romero](https://twitter.com/mrm8488)
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model โ€“ thatโ€™s the same number of layers & heads as DistilBERT โ€“ initialized from the default initialization settings and trained from scratch on the full `javascript` corpus (120M after preproccessing) for 2 epochs.
## Quick start: masked language modeling prediction
```python
JS_CODE = """
async function createUser(req, <mask>) {
if (!validUser(req.body.user)) {
return res.status(400);
}
user = userService.createUser(req.body.user);
return res.json(user);
}
""".lstrip()
```
### Does the model know how to complete simple JS/express like code?
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="mrm8488/codeBERTaJS",
tokenizer="mrm8488/codeBERTaJS"
)
fill_mask(JS_CODE)
## Top 5 predictions:
#
'res' # prob 0.069489665329
'next'
'req'
'user'
',req'
```
### Yes! That was easy ๐ŸŽ‰ Let's try with another example
```python
JS_CODE_= """
function getKeys(obj) {
keys = [];
for (var [key, value] of Object.entries(obj)) {
keys.push(<mask>);
}
return keys
}
""".lstrip()
```
Results:
```python
'obj', 'key', ' value', 'keys', 'i'
```
> Not so bad! Right token was predicted as second option! ๐ŸŽ‰
## This work is heavely inspired on [codeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team
<br>
## CodeSearchNet citation
<details>
```bibtex
@article{husain_codesearchnet_2019,
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
shorttitle = {{CodeSearchNet} {Challenge}},
url = {http://arxiv.org/abs/1909.09436},
urldate = {2020-03-12},
journal = {arXiv:1909.09436 [cs, stat]},
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
month = sep,
year = {2019},
note = {arXiv: 1909.09436},
}
```
</details>
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">&hearts;</span> in Spain