metadata
library_name: transformers
license: apache-2.0
base_model: albert-base-v2
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: cf-albert-finetuned1
results: []
cf-albert-finetuned1
This model is a fine-tuned version of albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4513
- F1: 0.2897
- Roc Auc: 0.5790
- Accuracy: 0.0826
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
0.4712 | 1.0 | 908 | 0.4797 | 0.0104 | 0.5024 | 0.0055 |
0.4862 | 2.0 | 1816 | 0.4579 | 0.2726 | 0.5727 | 0.0936 |
0.4447 | 3.0 | 2724 | 0.4438 | 0.3161 | 0.5899 | 0.1101 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3